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We report measurements of phase-matched nonlinear x-ray and optical mixing from single-crystal silicon
using subresonant 0.95 eV laser pulses and 9.5 keV hard x-ray pulses from the Linear Coherent Light Source
free-electron laser. Themixing signal appears as energy andmomentum sidebands to the elastic Bragg peak. It
is proportional to the magnitude squared of the relevant temporal and spatial Fourier components of the
optically induced microscopic charges and currents. We measure the first- and second-order sideband to the
220 Bragg peak and find that the efficiency is maximized when the applied field is along the reciprocal lattice
vector. For an optical intensity of approximately 1012 W=cm2, we measure peak efficiencies of 3 × 10−7 and
3 × 10−10 for the first- and second-order sideband, respectively (relative to the elastic Bragg peak). The first-
order sideband is consistent with inducedmicroscopic currents along the applied electric field and an isotropic
response. The second-order sideband depends nontrivially on the optical field orientation and is consistent
with an anisotropic response originating from induced charges along the bonds with C3v site symmetry. The
results agree well with first-principles Floquet-Bloch calculations.

DOI: 10.1103/7vqw-jbs7 Subject Areas: Atomic and Molecular Physics,
Condensed Matter Physics, Optics

I. INTRODUCTION

The microscopic, atomic-scale valence electron density
and its dielectric response are inextricably connected to
both the static and dynamic properties of materials [1]. It
plays a fundamental role in bonding and the valence

excitations that result in a material’s macroscopic electrical,
thermal, magnetic, and optical properties. The tetrahedrally
bonded group-IV semiconductors are prototypical exam-
ples of the outsized role that the valence electron density, a
small fraction of the total electron density, can play in the
structural stability of materials. In this case, sp3 hybridi-
zation leads to strong covalent bonding and stability against
shear deformation [2,3]. Despite the important role of the
valence charge density, there is a dearth of methods for
directly accessing its angstrom-scale structure and excited-
state dynamics, especially in the bulk.
Nonresonant x-ray scattering is a powerful tool for

imaging atomic-scale structure, as the differential elastic
scattering cross section is proportional to the modulus

*Contact author: ccornela@stanford.edu
†Contact author: dreis@stanford.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 16, 011006 (2026)
Featured in Physics

2160-3308=26=16(1)=011006(13) 011006-1 Published by the American Physical Society

https://orcid.org/0000-0003-1878-8986
https://orcid.org/0000-0002-3577-9857
https://orcid.org/0000-0003-1528-714X
https://orcid.org/0000-0003-2202-0910
https://orcid.org/0000-0002-9511-4224
https://orcid.org/0000-0003-4655-188X
https://orcid.org/0000-0002-3036-0467
https://orcid.org/0000-0002-1576-7533
https://ror.org/05gzmn429
https://ror.org/00f54p054
https://ror.org/04fme8709
https://ror.org/0149pv473
https://ror.org/04t3en479
https://ror.org/02vkaa689
https://ror.org/05gzmn429
https://ror.org/03kgsv495
https://ror.org/02wxx3e24
https://crossmark.crossref.org/dialog/?doi=10.1103/7vqw-jbs7&domain=pdf&date_stamp=2026-01-07
https://doi.org/10.1103/7vqw-jbs7
https://doi.org/10.1103/7vqw-jbs7
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


square of the spatial Fourier transform of the electron
density [4]. Conventional nonresonant x-ray scattering
experiments provide this information from the entire
electron density, valence, and core. Because the valence
density tends to be delocalized and makes up only a small
fraction of the total electron density, it can be difficult
to separate from the more localized core density. In the
case of the group-IV semiconductors, the ground-state
valence density can be obtained by detailed measurements
of quasiforbidden Bragg peaks after removing contribu-
tions from multiple scattering and anharmonic thermal
vibrations [5–8].
X-ray and optical wave mixing (XOM) corresponds to

the nonlinear interaction between x-ray and optical photons
mediated by the valence charge density. It was originally
proposed by Freund and Levine [9] and Eisenberger and
McCall [10] around 1970 and has recently received
renewed attention for its potential to image valence charge
motion at optical frequencies with atomic-scale spatial
resolution [11–18]. In the limit that the x-ray bandwidth
is small compared to the optical period, phase-matched
XOM in crystals appears as energy and momentum side-
bands to ordinary Bragg peaks (corresponding to nonlinear
sum and difference frequency generation). In this case, the
x-rays are a weak probe of the optically modulated charge
density and, thus, the microscopic optical susceptibility.

The intensity of the sidebands IðnÞG ∝ jρðnÞ
G⃗
j2. Here, ρðnÞ

G⃗
¼

G⃗ · χðnÞ
G⃗
½E⃗�n are Fourier components of the electron density

ρðr⃗; tÞ corresponding to the nth harmonic of the optical
frequency and G⃗th spatial Fourier component of the lattice.

Similarly, χðnÞ
G⃗

are the spatial Fourier components of the

local optical susceptibility χðnÞðr⃗Þ. Thus, measurements of
the amplitude and phase of the sidebands are necessary to
reconstruct the motion of the atomic-scale optically
induced valence electron density within the unit cell.
Since the optically induced charge density is a small
fraction of the already small valence charge density, the
sidebands are weak, and these measurements require high-
resolution analyzers to separate the sum (or difference)
frequency signal from the elastic background.
The first observation of XOM was reported more than

40 years after the original proposals [11]. In that experiment,
Glover et al. measured the first-order sum-frequency side-
band between 8 keV x-rays and 1.55 eV optical photons
about the 111 Bragg peak from single-crystal diamond. The
results are consistent with first-principles calculations for the
induced charge density residing primarily along the tetrahe-
dral bonds.Because of the lackof phase information, only the
magnitude of the111 spatial Fourier component of the charge
density at the optical frequency could be extracted.
Nonetheless, the results are a particularly notable measure-
ment of the microscopic optical response, which is strongly
affected by dielectric screening and local-field effects due to
the high density and atomic-scale spatial inhomogeneities

occurring on the scale of approximately 10−4 of the optical
wavelength [19]. Aswe demonstrate here, higher-orderwave
mixing about a suitable Bragg peak yields additional
symmetry information that can help localize the valence
density without the need of phasing.
In this article, we report x-ray and optical wave mixing in

single-crystal silicon using monochromatic x-rays from a
free-electron laser.Wedetect the first- and second-order sum-
frequency sidebands about the 220Bragg peak correspond to
the nonlinear mixing of 9.5 keV x-ray photons with one and
two 0.95 eV IR photons, respectively. Silicon has the same
centrosymmetric point group as diamond and, thus, a
vanishing macroscopic second-order optical susceptibility
in the dipole limit. Thus, the observation of a second-order
sideband in a centrosymmetric material is an indication of
broken inversion symmetry at the microscopic level.
We find that the first-order sideband to the Si 220

behaves qualitatively like the first-order sideband to the
diamond 111 reported by Glover et al. In contrast, the
second-order sideband corresponding to the 220 compo-
nent of the local second-order optical susceptibility scales
quadratically with the infrared pump intensity as expected
for a perturbative nonlinear response. The IR-laser polari-
zation dependence for the second-order sideband is incon-
sistent with the induced charges merely following the
optical field, unlike what is seen in the first-order sideband
reported here and in Ref. [11]. This and the relatively high
efficiency of the second-order sideband show that it is
dominated by the local second-order dipole response, as
opposed to the more general multipolar contribution.
Our results are consistent with a second-order local

nonlinear optical response originating from the optically
induced motion of the interstitial charges with local
inversion symmetry breaking and overall reduced sym-
metry compared to the atomic sites. In particular, from a
single measurement on (001)-cut crystal, we constrain
three of the four independent 220 spatial Fourier com-
ponents of the local nonlinear optical susceptibility,

χð2Þ11 ð220Þ þ χð2Þ12 ð220Þ ≈ χð2Þ15 ð220Þ (in Voigt notation).

We further determine that χð2Þ11 ð220Þ ≈ 1.5χð2Þ15 ð220Þ and

χð2Þ12 ð220Þ ≈ −0.6χð2Þ15 ð220Þ using a (1̄10)-cut crystal. Our
measurements agree well with our ab initio calculations for
x-ray scattering from the induced charge density oscillating
at twice the IR-laser frequency. We note, however, that this
second-harmonic component to the induced charge does not
radiate and, thus, can be observed only with an atomic scale
probe such as x-ray optical mixing. Details of our formalism
are given in Appendixes A–E. In Sec. II, we describe the
experimental setup, followed by the procedure and results in
Sec. III. We conclude in Sec. IV and give a brief outlook.

II. EXPERIMENTAL APPARATUS

The measurements were performed using the x-ray
pump-probe (XPP) instrument at the Linear Coherent
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Light Source hard x-ray free-electron laser (FEL) [20]. The
FEL provided x-ray pulses at a repetition rate of 120 Hz
with a central energy of 9.5 keV and a bandwidth of
approximately 1 eV after the diamond 111 beam line
monochromator (see Fig. 1). The x-rays are focused with
a compound beryllium lens, to better match the optical spot
size, and arrive at the sample position with an approximate
spot size of approximately 20 × 30 μm2 and a pulse length
of approximately 30 fs. The x-rays are vertically polarized,
and the scattering plane for both the sample and crystal
optics is in the horizontal plane. The sample is a 40-μm-
thick (001)-cut, float zone single-crystal silicon sample
fabricated by Norcada.
After the Be lenses, the x-ray beam is further mono-

chromated and collimated by a custom four-bounce 311
Si channel-cut monochromator (CCM1 and CCM2) in a
dispersive geometry with an estimated throughput of appro-
ximately 5 × 107 photons per pulse (on average), a band-
width of approximately 0.3 eV, and divergence ≤0.7 mdeg
(12 μrad) in the horizontal plane at the sample position.
The purpose of the monochromator is to create an incident
x-ray beam that is sufficiently narrow in energy and
divergence so that the sum-frequency signal can be well
separated from the elastic background.
The sample is mounted using a manual Thorlabs RSP1

rotation mount to bring the 220 reciprocal lattice vector into
the scattering plane (horizontal in the lab frame) for a

symmetric Laue transmission scattering geometry. After the
sample, we use a custom four-bounce 311 Si channel-cut
analyzer (CCA1 and CCA2) matched to the monochromator
(also in a dispersive geometry). This provides an effective
filter for accepting XOM photons while rejecting the
elastically scattered background photons outside this accep-
tance. After the analyzer, we place a pixelated Jungfrau 1M
detector that measures x-rays with single-photon sensitivity
on a shot-by-shot basis. Additional lead shielding is used to
minimize parasitic x-ray background from air scattering and
the various x-ray optics. All channel-cut crystals (CCM1,
CCM2, CCA1, and CCA2) and the sample are rotated with
submillidegree resolution in the scattering planeusingKohzu
RA10A-W01 rotation stages.
The sample is pumped with subband gap 1300 nm

(0.95 eV), approximately 100 fs, millijoule-scale pulses
provided by the XPP optical parametric amplifier. The
relative arrival time between each optical and x-ray pulse is
given on a shot-by-shot basis using a Ce:YAG-based arrival
time monitor [21]. The linearly polarized pump is focused
with a 250 mm focal length lens to a measured spot size of
approximately 300 μm FWHM and a peak intensity of
approximately 1012 W=cm2 at the sample position. We
choose to couple at near normal incidence so that reflection
losses from the sample are approximately independent of
the polarization of the laser. The linear polarization is
rotated using a half wave plate before the lens.

FIG. 1. Schematic of XOM experiment setup. From the right, the FEL hard x-ray beam at 9.5 keV (shown in light blue) is
monochromatized by the XPP diamond 111 large offset monochromator, before being gently focused by compound Be lenses. A
secondary 311 Si channel-cut monochromator reduces the bandwidth to approximately 0.3 eV and recollimates the beam in the
horizontal scattering plane. The linearly polarized 0.95 eV pump passes through a half-wave plate for varying the polarization and a lens
for better matching the spot size of the x-rays. It is coupled at near normal incidence to the sample surface. The sample is 40-μm-thick
(001)-cut Si. The two beams cross at the sample location, and the sample is oriented to fulfill the phase-matching conditions for
producing optical sidebands to the 220 Bragg peak (shown schematically for the first-order sideband in the inset on the bottom right). In

the inset, G⃗hkl is the reciprocal lattice vector (G⃗220 for our measurement), k⃗x is the x-ray wave vector, k⃗ðnÞ is the wave-mixing wave
vector, and nk⃗o is the corresponding wave vector of n optical photons. Both the elastically scattered x-rays from the tail of the Bragg
peak (shown in blue after the sample) and the phase-matched XOM x-rays (shown in purple after the sample) exit the crystal and enter
the analyzer. The analyzer acceptance is narrow enough to allow the XOM photons onto the detector while rejecting the elastically
scattered photons. Diodes 1–4 are placed along the beam path to allow real time monitoring of any drift between components.
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The x-ray flux is monitored on a shot-by-shot basis using
photodiodes to measure scattered x-rays from thin Kapton
films. The diodes (diodes 1–4 in Fig. 1) are placed between
CCM1 and CCM2, before the sample, after the sample, and
between CCA1 and CCA2 to monitor the x-ray flux
between components during the measurement. The optical
laser is quasirandomly mistimed with respect to the x-rays
in an overall ratio of two optical laser off for every three
optical laser on shots, allowing for measurement of the
background under otherwise similar conditions as the
signal. In the figures below, the measured data are shown
with the laser-on shots (laser-off shots) as blue circles
(orange circles).

III. PROCEDURE AND RESULTS

The x-ray optics and sample shown in Fig. 1 are first
aligned to the elastic 220 Bragg peak (at a Bragg angle
θB ¼ 19.86° for our x-ray energy). After aligning the Bragg
peak, the crystal is detuned according to the phase-match-
ing condition (see Appendix E) to isolate a particular
sideband and, thus, Fourier component of the induced
charge density. The calculated sample detuning Δθ for the
first- (second-) order sideband of the Si 220 peak is 20.72
(41.44) mdeg. The scattering angle and energy of the
analyzer are detuned by the calculated Δθs ¼ 1.9ð3.8Þ
mdeg and Δθa ¼ 2.4ð4.8Þ mdeg from the nominal con-
ditions (2θB ≈ 39.73° and θa ≈ 23.48°, respectively) for
measuring the 220 elastic Bragg peak. Here, θa is the Bragg
angle for the analyzers. We rotate the channel cuts to set
Δθs and Δθa. Since the two analyzer crystals are not
mounted on a common rotation about the sample, we
compensate for the change in scattering angle (and analyzer
energy) by rotating them individually. This corresponds to
ΔθCCA1 ¼ −4.4 (8.8) mdeg and ΔθCCA2 ¼ −0.6 (−1.2)
mdeg, relative to the angles for the elastic scattering.
Once the setup in Fig. 1 is aligned, spatial and temporal

overlap between the pump pulse and x-ray pulse are
optimized. We assume these measurements are shot-noise
limited for the purpose of the quoted errors. For all
measurements, we scan only one parameter at a time,
with the others nominally at their optimum value.
Figures 2(a) and 2(b) show the measured dependence
of the first- and second-order sideband signals, respec-
tively, as a function of temporal delay between the x-ray
and optical pulses. The temporal jitter between arrival of
the x-ray and optical pulses had a FWHM of about 230 fs
and was corrected using the arrival time monitor. Figure 2
(a) is displayed on a logarithmic scale and shows multiple
peaks due to the finite reflection of the optical beam inside
the sample. The secondary peaks are spaced by the round
trip time, as the phase-matching condition is met only for
the nominally copropagating laser and x-ray. The peak
signal for the second-order sideband is about a thousand
times weaker than the first-order. In both cases, the
temporal window, about 400 fs FWHM for the first-order,

for mixing is dominated by the noncollinear convolution
of the two pulses that propagate with different group
velocities c and c=ng at a crossing angle of approxi-
mately θB.
Figures 2(c) and 2(d) show the number of detected

photons per pulse as a function of Δθ. The mdeg-scale
acceptance in the elastic rocking curve [inset in Fig. 2(c)]
and the first-order sideband shown in Fig. 2(c) reflect the
high quality of the sample. The FWHMof the elastic Si 220
rocking curve shown in the inset in Fig. 2(c) is approx-
imately 0.6 mdeg. We attribute the modulation in the peak
shown in Fig. 2(c) to effects of the walk-off between the
x-ray and optical pulse inside the crystal, which reduces the
effective scattering volume compared to the unexcited
scattering volume for the elastic peak. The sample detuning
required to phase match in Figs. 2(c) and 2(d) matches the
calculated values almost exactly. Figures 2(e) and 2(f) show
the number of detected photons per pulse as a function of
detuned analyzer energy ΔE, at fixed θs, about the first and
second sideband, respectively. Figure 2(e) shows a well-
defined first-order sideband on the tails of the elastic
background. The peak position is approximately 1 eV
above the elastic line (as expected) and has a signal to
noise ratio of approximately 100∶1 and a width of 0.2 eV
(expected based on the pass band of the channel-cut mono
and analyzer). Similarly, the second-order sideband shows
an energy shift of about 2 eV, as expected for a sum-
frequency photon involving two pump photons, albeit with
significantly lower statistics for the detected photons for
both the on and off shots. Figures 2(g) and 2(h) show the
detected photons per pulse as a function of θs, at fixed ΔE
corresponding to the first- and second-order sideband.
In both cases, the sidebands have a width of about 1 mdeg,
comparable to the angular acceptance of the 311
Bragg peak.
The intensity of each sideband as a function of pump

pulse energy is shown in Fig. 3. In the perturbative regime,
one would expect that the first-order sideband would be
linearly proportional to the laser intensity (and, thus, pulse
energy) while the second-order sideband would depend
quadratically. We find that the reduced χ square for a
sublinear dependence (exponent of 0.683� 0.025 and
χ square=d:o:f: of 3.228) shown in Fig. 3(a) corresponds
to a much better fit than a linear fit (exponent of 1 and χ
square=d:o:f: of 8.218). The second-order fits well to a
nearly quadratic dependence. The deviation from the
expected scaling for the first-order is significant, indicating
a breakdown of perturbative scaling, although it remains
unclear whether it is due to microscopic or macroscopic
nonlinearities.
The measured values for the efficiency of the first-

and second-order sidebands to the 220 Bragg peak are

ηð1Þ220 ¼ 3 × 10−7 and ηð2Þ220 ¼ 3 × 10−10, respectively, rela-
tive to the (elastic) Bragg peak at the highest intensity and
when the applied field is parallel to G⃗. Here, we define
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FIG. 2. Measurements of the first- (left column) and second-order (right column) XOM sidebands. Measurements with the optical
laser on are shown in blue and with the optical laser off are shown in orange. XOM dependence on relative delay Δt between x-ray and
optical pulse are shown for (a) first- (on a logarithmic scale) and (b) second-order sidebands. XOM dependence on sample rotationΔθ in
the scattering plane of the (c) first- and (d) second-order sidebands. The signal is maximized when the crystal is phase matched, set to the
peak of the sample rotation curve in (c) or (d), and temporal overlap is optimized, set to the peak of the relative delay curve in (a) or (b).
Once the signal is maximized, the energy contents of the XOM beams measured with the analyzer are shown for the (e) first-order (on a
logarithmic scale) and (f) second-order sideband. Note the tail of the elastic peak in (e) at ΔE ≠ 0 because the analyzer is aligned such
that θs ≠ 2θB. Similarly, we show the dependence of (g) the first-order sideband and (h) the second-order sideband on the scattering
angle. Note that in (a) and (e) data with no counts are omitted from the plot.
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ηðnÞ
G⃗

≡ IðnÞ
G⃗
=Ið0Þ

G⃗
. Because of the nature of the noncollinear

wave-mixing transmission geometry, ηð1Þ220 and ηð2Þ220 of the
sidebands will be a slight underestimate because the wave
mixing scatters only from the crystal volume excited by
the optical pulse, which is smaller than the crystal
volume involved in the elastic scattering. We estimate
a factor of 4 times less volume in the sample generating
the wave-mixing photons compared to the elastically
scattered photons at the Bragg peak due to walk-off

between the pump and x-ray pulses. Note that the
efficiency of the second-order response is much higher
than what would be expected from multipolar effects,

i.e., ηð2Þ220 ≫ ðηð1Þ220Þ2. As discussed in Appendix C, this
indicates that the second-order sideband is dominated
by the second-order dipole response of the valence
electrons which is more sensitive to local inversion
symmetry breaking. This conclusion is further supported
by the measurement of the polarization dependence
described below.
The detected photons per pulse as a function of

optical electric field direction ϵ⃗ [rotated in the plane
perpendicular to (001)] is shown for the first-order
sideband in Fig. 4(a) along with the results of our
ab initio calculations based on the Floquet-Bloch for-
malism [12] shown in purple (see Appendix B for details
of the calculations and Appendix D). We observe a
dependence proportional to the projection of the electric
field along the 220 reciprocal lattice vector, which is
consistent with induced motion following the field
direction. This is expected for first-order sidebands of
high-symmetry reciprocal lattice vectors like the 220 and
is in good agreement with our theoretical calculations.
Our measurement of the second-order sideband to the
220 peak as a function of the optical field direction
is shown in Fig. 4(b). The second-order polarization
dependence is not consistent with the induced electron
motion following exactly the direction of the field. This,
in addition to the efficiency of the second-order sideband,
is consistent with a second-order dipole response that
originates from sites in the silicon unit cell with a
nonzero local microscopic χð2Þðr⃗sÞ or, in other words,
where the symmetry is locally broken. The form of the
polarization dependence and the sensitivity of the second-
order 220 component of the optical response (see
Appendix C) are consistent with the response originating
at the sites between the atomic sites and the center of the
bonds (with C3v site symmetry). Although the atomic
sites (Td site symmetry) would be expected to also have a
nonzero χð2ÞðrsÞ individually, their contribution to the 220
component is forbidden by the symmetry of the crystal
structure. The center of the bonds (the D3d sites) have an
identically zero χð2ÞðrsÞ, because they are centers of
symmetry, and do not contribute to any spatial Fourier
component for small oscillations (for more details about
the sensitivity of the 220 to different site symmetries, see
Appendix D).
For the (32e) C3v sites, there are four independent

second-order tensor components in terms of the cubic
axes, (χ11, χ12, χ14, and χ15). In Appendix A, we define

the reduced tensor ΓðnÞ
G⃗

¼ G⃗ · χðnÞ
G⃗
, such that ρðnÞ

G⃗
¼ ΓðnÞ

G⃗
E⃗n.

Thus, we find that, for C3v symmetry, ρð2Þ220 is sensitive to
three of the four tensor components (χ11, χ12, and χ15),
leading to a reduced tensor:

FIG. 3. (a) Optical pulse energy dependence of the first-order
sideband with fit in red. (b) The optical pulse energy dependence
of the second-order sideband with fit in red.
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Γð2Þ
220 ¼ 8f32e sin8πξ

0
BB@
χ11þ χ12 χ15 0

χ15 χ11þ χ12 0

0 0 2χ12

1
CCA; ð1Þ

for an effective charge of f32e electrons at r⃗s ¼ ðξ; ξ; ξÞ and
equivalent positions along the bonds (in units of the cubic
lattice constant). For simplicity of notation, we drop the
220 label for these tensor components, except for where
required for clarity. In our experiment on the (001)-cut
crystal, the applied electric field makes an angle ϕ with
respect to the 220 reciprocal lattice vector and rotates in the
(001) plane. For this geometry, the expected polarization
dependence of the second-order induced density

ρð2Þ220ðr⃗32e;ϕÞ ∝ jE⃗j2½χð2Þ11 þ χð2Þ12 þ 2χð2Þ15 cosð2ϕÞ�: ð2Þ

This is consistent with what we measure in Fig. 4(b). We
emphasize that these results are based purely on a site
symmetry analysis and, thus, require only knowledge of
the space group. We constrain the values of the nonlinear
tensor components by fitting Eq. (2) to our experimental

results. We find that χð2Þ11 þ χð2Þ12 ≈ χð2Þ15 . We perform addi-
tional measurements of the laser polarization dependence
of the second-order sideband to the 220 Bragg peak in a
100-μmm-thick ð110Þ-cut crystal under similar conditions.

This allows us to further constrain χð2Þ220 by rotating the
electric field in a plane orthogonal to the (001) face but

still containing G⃗ ¼ 220. We find that χð2Þ11 ≈ 3
2
χð2Þ15 and

χð2Þ12 ≈ − 1
2
χð2Þ15 . The combined results compare well with our

first-principles theoretical calculations (Appendix B) and
are given in Table I.
While we have measured only two sidebands about a

single Bragg peak, the very good qualitative and quantitative
agreement with theory gives us confidence that our formal-
ism will be able to predict the full excited-state density
similarly well. In Fig. 5, we show the predicted first- and
second-order induced density in both real [Figs. 5(a) and
5(c)] and reciprocal space [Figs. 5(b) and 5(d)] (for the
f200g; f111g; f220g family of planes) for a representative
set of applied electric field directions in the (001) plane and at
a fixed field strength of 5 × 1011 W=cm2. For the reciprocal
space plots, the amplitude is encoded in the size of the
spheres, and the color is used to encode the different families
of planes. The real space density is limited to the valence
density and appears primarily off the atomic sites (this is to be
expected, since our first-principles calculations are based on
the pseudopotential method and include only the top four
valence bands originating from 3s and 3p electrons). The
first-order density largely follows the field as seen in our
measurements. Note that the applied field breaks the cubic
symmetry of the crystal (dynamically), such that different
Fourier components from the same family are, in general, no
longer equivalent.Moreover,while the first-order response in

FIG. 4. (a) The polarization dependence of the first-order sideband with phenomenological model fit results in red. (b) The
polarization of the second-order sideband with phenomenological model fit results in red. Both measurements were taken with an optical
field strength of approximately 1012 W=cm2. For both, the relative theoretical values based on our ab initio calculations are shown
in purple.

TABLE I. Extracted components of χð2Þ220 in units of χð2Þ15 .

Measurement Theory

χð2Þ11 þ χð2Þ12
0.97� 0.22 0.7

χð2Þ11
1.53� 0.19 1.5

χð2Þ12
−0.56� 0.13 −0.83
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real space is rather complicated, ρð1Þf111g and ρð1Þf220g are

proportional to ðG⃗ · E⃗Þ2. The second-order response is even
more nontrivial and clearly not proportional to ðG⃗ · E⃗Þ4, as in
the experimental case for the220. In addition,we see thatρð2Þ002

is allowed for E⃗ having a component along both x̂ and ŷ
directions. This suggests that the field breaks the glide
plane symmetry, which ordinarily is responsible for the
strong-forbidden nature of the f00lg family of planes
when l ¼ 4m − 2.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

We have reported measurements of x-ray and optical
wave mixing in silicon excited by below band gap optical
photons. We have used phase matching and crystal optics to
extract the weak nonlinear sum-frequency signals corre-
sponding to mixing of single x-ray photons with one and
two optical photons in single-crystal silicon. In principle,
atomic-scale movies of the electron motion within the unit
cell could be constructed by measuring multiple sidebands
to multiple Bragg peaks and determining their relative

FIG. 5. Ab initio calculations of the induced charge densities for the first-order optical response as a function of electric field direction
(with the electric field shown in red rotating within the 001 plane) in (a) real space and (b) reciprocal space. Corresponding ab initio
calculations for induced charge densities of the second-order response in (c) real space and (d) reciprocal space. Note that in the
reciprocal space plots the red spheres correspond to points in the 111 family, the blue spheres the 220 family, and the green spheres the
200 family. The points corresponding to the 220 component in the reciprocal space plots are highlighted in purple. The size of
the spheres is associated with the amplitude of that component of the charge density at the given electric field direction. The isosurfaces
in (a) and (c) are visualized using VESTA [22]. The yellow and blue colors represent negative and positive charges, respectively.
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phase (for example, using maximum entropy methods [23]
or multibeam diffraction [24]). Nonetheless, we have
shown here that the polarization dependence of a single
second-order sideband contains sufficient information to
state that the second-order response is dominated by dipole
effects allowed by local inversion symmetry breaking with
negligible contribution from higher-order multipoles.
Furthermore, we are able to attribute the second-order dipole
response to particular noncentrosymmetric high-symmetry
(C3v) sites along the sp3 bonds within a phenomenological
point-dipole model (see Appendix C) and without direct
phase information. We were also able to determine three of
the four symmetry equivalent Fourier components of the
local second-order optical susceptibility tensor, constrained
by theparticularBragg peak.The results agreewellwith first-
principles, Floquet-Bloch calculations for the optically
excited valence electron density. These findings have impor-
tant implications for understanding electronic structure and
dynamics in both near-equilibrium and strongly driven
materials. For example, XOMmay help elucidate the micro-
scopic mechanism underlying high harmonic generation in
strongly driven solids [25] or how light-induced changes in
electronic structure lead to novel functionality in quantum
materials [26].
New methods are required to move beyond perfect

crystals (allowing this measurement in a much wider range
of materials) and ideally to perform the measurements
using time-domain scattering with newly available atto-
second hard x-ray pulses [27–29]. Recent advances in high-
brightness fourth-generation synchrotron sources suggest
that imaging valence electron motion may soon be feasible
without the need for free-electron lasers.
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APPENDIX A: OPTICALLY INDUCED
CHARGE DENSITY

In the presence of the optical field, we define the total
microscopic electron density ρðr⃗; tÞ ¼ ρ0ðr⃗Þ þ Δρðr⃗; tÞ.
Here, ρ0ðr⃗Þ is the field-free density (valence and core) that
is periodic in space ρ0ðr⃗þ R⃗Þ ¼ ρ0ðr⃗Þ for all lattice vectors
R⃗, and Δρðr⃗; tÞ is the time-dependent charge (valence)
density induced by the low-frequency optical (IR) electric
field E⃗ðr⃗; tÞ in the presence of screening and local-field
effects.
For simplicity, we approximate the applied optical field

as a monochromatic plane wave with period To and angular
frequency ωo ¼ 2π=To. The charge density induced by the
optical field corresponds to an incommensurate and traveling
charge density wave. Thus, Δρðr⃗; tÞ ¼ Δρðr⃗þ R⃗; tþ ToÞ
up to a relatively slowly varying phase factor. We expand the
total charge density in terms of its Fourier components:

ρðr⃗; tÞ ¼
X
G⃗;n

ρðG⃗þ nk⃗o; nωoÞe−i½ðG⃗þnk⃗oÞ·r⃗−nωot�; ðA1Þ

where G⃗ are the reciprocal lattice vectors, n are harmonics of
the optical frequency, and ko ¼ 2πno=λo is the wave vector
of the optical pump with vacuum wavelength λo and index
of refraction no. For simplicity of notation, we define

ρðnÞ
G⃗

≡ ρðG⃗þ nk⃗o; nωoÞ ≈ ρðG⃗; nωoÞ, since λo is long com-

pared to the lattice spacing.
We define the reduced tensor ΓðnÞðr⃗Þ ¼ ∇ · χðnÞðr⃗Þ, in

terms of a local nonlinear optical susceptibility χðnÞðr⃗Þ, such
that

ρðnÞðr⃗Þ ¼ ΓðnÞðr⃗Þ · ½E⃗�n: ðA2Þ

Thus, the reduced tensor relates the induced charge density
oscillating at the harmonics of the optical excitation for a
given field magnitude and direction.
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APPENDIX B: AB INITIO CALCULATIONS
FOR SILICON

We perform ab initio calculations of the induced charge
density ρðnÞðr⃗Þ for optically excited silicon within the
Floquet-Bloch formalism [30].
We consider a driving field with a photon energy of

0.95 eV and an intensity of 5 × 1011 W=cm2. The calcu-
lations are performed using four valence bands and 76
conduction bands on a four-times shifted 12 × 12 × 12
Monkhorst-Pack k-point grid. The infinite Floquet-Bloch
Hamiltonian is approximated by a matrix with 301 blocks,
each containing 80 states. The k-point grid, the number of
bands, and the blocks are selected based on a convergence
study. We apply the scissors approximation [31] to correct
the direct band gap from the calculated 2.5 eV to the
experimental value of 3.5 eV [32,33]. From these calcu-
lations (as a function of field direction), we determine the
various components of the reduced tensor ΓðnÞðr⃗Þ, defined
in Appendix A.
In Fig. 6, we show the results of our calculations ofΓðnÞðr⃗Þ

for the components of (a) the ground-state valence density
(n ¼ 0), (b) its first-order response (n ¼ 1), and (c) its
second-order response (n ¼ 2). Note that, while Γð0Þðr⃗Þ
represents the ground-state density, the core-electron density

is excluded, since we consider only the highest four con-
duction bands. Thus,Γð0Þðr⃗Þ is distributed about the center of
the bonds, as expected for sp3 bonding.

The first-order reduced tensor components Γð1Þ
i ðr⃗Þ,

where i ¼ x, y, z, is distributed about the tetrahedral sites,

while the second-order reduced tensor components Γð2Þ
ij ðr⃗Þ

show a more complex second-order density shift off the
center of the bond toward the atomic sites but not onto the
atomic sites. We note that the measurement of the second-
order response is consistent with optically induced valence
density in the space between the atomic sites and the center
of the bonds.
In the experiments, we measure individual spatial and

temporal Fourier components of the induced density. These
can be predicted from the spatial Fourier components
of ΓðnÞðr⃗Þ:

ΓðnÞ
G⃗

¼ G⃗ · χðnÞ
G⃗
; ðB1Þ

where χðnÞ
G⃗

are the spatial Fourier components of χðnÞðr⃗Þ.
Thus, the Fourier components of the charge density

ρðnÞ
G⃗

¼ ΓðnÞ
G⃗

· ½E⃗�n: ðB2Þ

We note that with this definition the ground-state charge
density is defined as ρð0Þðr⃗Þ ¼ Γð0Þðr⃗Þ≡∇ · Elocðr⃗Þ, where
Elocðr⃗Þ is the local field inside the crystal (in the absence of
any external perturbation). In Sec. III, we present results
for the first- and second-order induced density in both real
and reciprocal space (for the f200g; f111g; f220g family
of planes) for a representative set of applied electric
field directions sampled in the experiment and at fixed
magnitude.
In the kinematic limit [34], the intensity of a sideband to

a reciprocal lattice vector G⃗ is

IðnÞ
G⃗

∝ jρðnÞ
G⃗
j2 ¼ jΓð2Þ

G⃗
· ½E⃗�nj2: ðB3Þ

We define the efficiency of a given sideband relative to the
elastic Bragg peak:

ηðnÞ
G⃗

¼
IðnÞ
G⃗

Ið0Þ
G⃗

: ðB4Þ

Thus, up to macroscopic propagation effects including

walk-off, ηðnÞ
G⃗

¼
�
ρðnÞ
G⃗
=ρð0Þ

G⃗

�
2
.

APPENDIX C: POINT-DIPOLE MODEL

We present a phenomenological point-dipole model of
the optically induced charge density. We use this minimal
model both to provide an intuitive interpretation of the

FIG. 6. Ab initio calculations of the reduced tensor components
of the valence density in real space for (a) the zeroth-, (b) the first-,
and (c) the second-order response to the optical field. Calculations
performed for an optical intensity of 5 × 1011 W=cm2.
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measurements based on symmetry and facilitate the con-
nection between our measurements and our ab initio
calculations. In this model, we approximate the time-
varying charge density, analogous to the independent atom
approximation, as

ρðr⃗; tÞ ¼
X
s

fsδ½r⃗ − r⃗s − u⃗sðtÞ�; ðC1Þ

where fs is the electron density at site s and u⃗sðtÞ ¼P
n u

ðnÞ
s expðinωotÞ is the induced displacement about its

equilibrium position r⃗s, oscillating at harmonics of the
drive frequency. Thus,

ρðnÞ
G⃗

¼ 1

ToV

Z
dteiωt

X
s

fseiG⃗·r⃗seiG⃗·u⃗sðtÞ; ðC2Þ

where V is the unit cell volume. Note that, even if u⃗ðtÞ
oscillates only at the fundamental ω0, the Fourier compo-
nents of the induced density will still contain both the even
and odd harmonics, since the displacements appear in the
exponential. For example, in this case, ρð2Þ ≈ 1

2
ðρð1ÞÞ2. In

the experiments, we find that ρð2Þ220 ≫ ðρð1ÞÞ2 and has a very
different polarization dependence. Thus, uð2Þ220 ≠ 0, and the
leading-order nonlinear response can be approximated as a

local nonlinear dipole, p⃗ðnÞ
s ¼ −fsu⃗

ðnÞ
s . In analogy with

macroscopic nonlinear optics, we expand the dipole
moments for site s as

p⃗ðnÞ
s ¼ χðnÞðr⃗sÞ½E⃗�n: ðC3Þ

We note that, unlike in macroscopic nonlinear optics, the
local optical susceptibility χðnÞðr⃗sÞ depends on the site
symmetry about position rs within the unit cell of the
crystal, and, thus, even order nonlinearities can arise due to
local inversion symmetry breaking in centrosymmetric
materials, for G⃗ ≠ 0.

APPENDIX D: WAVE-MIXING SENSITIVITY
IN THE SILICON STRUCTURE

Silicon is isostructural with diamond, sharing the same
high-symmetry m3mðOhÞ centrosymmetric point group
and Fd3̄m space group. There are eight atoms per conven-
tional face-center-cubic unit cell occupying the (8a) tetra-
hedral sites with 4̄3mðTdÞ symmetry. A portion of the
structure showing the local coordination is shown in Fig. 7.
Here, the tetrahedral atomic sites are shown in red, and the
covalent bonds are shown schematically in green. Halfway
between each bonds are centers of symmetry corresponding
to the 16c Wyckoff sites with 3̄mðD3dÞ site symmetry;
while a general position along the bonds corresponds to
the 32e Wyckoff sites with 3mðC3vÞ site symmetry.
While the overall structure has inversion symmetry, clearly

both the atomic sites and the general positions along the
bond lack local inversion symmetry about their respec-
tive sites.
Note that for the diamond structure jρhklj ≠ 0 for h, k, l

odd or hþ kþ l ¼ 4m for h, k, l all even and m an integer.
Assuming point charges at the atomic sites, jρhklj is
maximal (8f=a3) for the hþ kþ l ¼ 4m case such as
220, as the tetrahedral sites lie completely within the
corresponding atomic planes (for suitable choice of origin).
As the valence charge distribution is nonspherically dis-
tributed about these sites, it gives rise to finite ρhkl
corresponding to certain otherwise forbidden Bragg peaks
such as the 222. This allows for weak diffraction from the
valence charge density but not, for example, the 002, which
is forbidden by glide plane symmetry.
Because of the cubic symmetry of the lattice, the

macroscopic linear optical properties are isotropic, and
the induced macroscopic polarization follows the applied
field. While this is not strictly true for the microscopic

linear response, ρð1Þ
G⃗

∝ G⃗ · E⃗ for certain G⃗ along high-
symmetry directions (e.g., the 111 and 220). In contrast, the
local nonlinear optical response can be anisotropic, even
along these high-symmetry directions. Thus, the symmetry
of the second-order response can be used to help localize
the induced charges even without direct phase information.

The form of χðnÞ⃗ðGÞ and, thus, ΓðnÞ
G⃗

depends on the local

symmetries of χðnÞðr⃗Þ and the particular G⃗. It can easily be

seen that Γð2Þ
hkl ¼ 0 for the tetrahedral sites, when

hþ kþ l ¼ 4m, even though locally these sites break
inversion symmetry. This is due to the overall inversion
symmetry of the point group that requires χð2Þðr⃗Þ ¼
−χð2Þð−r⃗Þ such that the second-order dipoles at the tetra-
hedral sites are 180° out of phase in every other plane.
Thus, by an analysis of the second-order sidebands from
the 220 reflection, we can localize the induced charge away
from the tetrahedral sites by its site symmetry.

FIG. 7. An illustration of the high-symmetry sites along the
tetrahedral bonds for silicon. The red spheres represent the atomic
positions at the 8a Wyckoff positions with Td symmetry, the
purple spheres represent the 16c Wyckoff positions at the center
of each bond with D3d symmetry, and the green represents the
32e Wyckoff positions with C3v symmetry.
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APPENDIX E: ISOLATION OF FOURIER
COMPONENTS

In the experiments, we make use of phase matching in
combination with an energy-resolving analyzer to isolate
particular spatial and temporal Fourier component of the
induced density. Although the optical wave vector is
approximately 10 000 times smaller than the x-ray wave
vector, it plays an important role in the phase-matching
condition. In general, phase matching implies satisfying
crystal momentum and energy conservation:

k⃗ðnÞ − k⃗x ¼ nk⃗o þ G⃗≡ Q⃗ðnÞ and ðE1Þ

ωðnÞ ¼ ωx þ nωo; ðE2Þ

where k⃗o, k⃗x, and k⃗ðnÞ are the optical, incident x-ray, and
nonlinear diffracted x-ray wave vectors, respectively, inside
the material. The angle between the incident and diffracted
x-rays, θs satisfies

cos θs ≡ k̂x · k̂
ðnÞ ¼ ðkðnÞÞ2 þ k2x − ðQðnÞÞ2

2kxkðnÞ
: ðE3Þ

While the angle between the incident x-rays and the lattice
planes,

θ ¼ sin−1

0
B@ QðnÞ sin θQðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðGþ kokÞ2 þ k2o − k2o⊥
q

1
CA

þ n
jnj tan

−1
�

kok
Gþ kok

�
; ðE4Þ

where kok and ko⊥ are the components of k⃗o within and

perpendicular to the plane containing G⃗ and k⃗x, respec-
tively.

sin θQ ≡ −k̂x · Q̂ðnÞ ¼ ðQðnÞÞ2 − ðkðnÞÞ2 þ k2x
2kxQðnÞ ðE5Þ

is the sine of the angle the incident x-rays make relative to

the planes perpendicular to Q⃗ðnÞ.
Since ωo ≪ ωx, ko ≪ kx, to first order in the ratio

x ¼ ωo=ωx, the deviation of the input angle relative to
the Bragg angle θB is

Δθ≡ θ − θB ðE6Þ

¼ nx
sin 2θB

ðnoðcos β cos θG − sin α sin θBÞ − 1Þ; ðE7Þ

where no is the index of refraction of the optical beam. α is
the angle that the internal optical beammakes relative to the

lattice planes, and γ is the angle that the optical beammakes
perpendicular to the plane containing k⃗ and G⃗ (note that
cos2 β ¼ cos2 α − sin2 γ). We have neglected the small
difference in the x-ray index from unity. If k⃗o is also
largely in plane, such that α ≈ β,

Δθ ¼ nx
sin 2θB

ðno cosðθB þ αÞ − 1Þ: ðE8Þ

Note that the deviation of the scattering angle from 2θB,

Δθs ≡ θs − 2θB ðE9Þ

≈ −
nx

cos θB
ðno sin αþ sin θBÞ; ðE10Þ

independent of γ. Since x ≪ 1,Δθ;Δθs ≪ 1, the difference
between the exact solution and the first-order approxima-
tion is negligible. Nonetheless, since the induced density is
a small fraction of the total density, we rely on the finite
deviations to isolate the mixing signal. This imposes
stringent requirements on the monochromation and colli-
mation of the incident beam as well as the background
rejection that includes rejecting the tails of the elastic Bragg
peak. This is true even for measurements of wave mixing in
nominally perfect crystals such as diamond and silicon. As
described in Sec. II, we achieve this by using a matched
pair of Si (311) channel-cut crystals in a dispersive
geometry for both the monochromator and analyzer.
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