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Interaction-free measurement (IFM) is a promising technique for low-dose detection and imaging, offering the
unique advantage of probing an object with an overall reduced absorption of the interrogating photons. We
propose an experiment to demonstrate IFM in the single x ray photon regime. The proposed scheme relies on the
triple-Laue (LLL) symmetric x ray interferometer, where each Laue diffraction acts as a lossy beam splitter. In
contrast to many quantum effects which are highly vulnerable to loss, we show that an experimental demonstration
of this effect in the x ray regime is feasible and can achieve detection with reduced dose and high IFM efficiency
even in the presence of substantial loss in the system. The latter aspect is claimed to be a general property of
IFM based on our theoretical analysis. We scrutinize two suitable detection schemes that offer a dose reduction of
up to half compared with direct detection. The successful demonstration of IFM with x rays promises intriguing
possibilities for measurements with reduced dose, mainly advantageous for biological samples, where radiation
damage is a significant limitation.
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1. INTRODUCTION
In quantum mechanics, the collapse or reduction of the wave
function due to measurement may occur even in cases of “non-
detection” events, where there appears to be no interaction
between the measurement device and the system. The origin of
this idea is rooted in Renninger’s “negative-result” experiment
[1]. The notion of an “interaction-free” quantum measurement,
first coined by Dicke [2], describe a scenario in which a non-
scattering event of a photon alters the wave function of an
atom, although the quantum state of the electromagnetic field
has not been affected. Later works introduced interaction-free
measurement (IFM) [3–5] in a somewhat different and more
applicable context, for which detection of an object is possi-
ble, without absorption or scattering of the probing particle by
the object. This uniquely quantum effect, known also as the
Elitzur–Vaidman bomb tester (see Fig. 1), relies on the distinc-
tion between a scenario in which a particle interferes with itself
and when it takes a certain path and thus does not interfere.
Therefore, the presence of an object which obstructs the inter-
ference can be inferred by the detectors and thus an object can
be detected without interacting with the particle. Since the pro-
cess is statistical, it is useful to define a figure of merit for the
efficiency of IFM, which is the ratio of interaction-free detec-
tion events and the total number of detection events. Initial
experimental demonstrations of this effect [5] achieved IFM
efficiencies of η< 1

2 and later demonstrations [6,7] achieved high
IFM efficiencies (η> 1

2 ), by utilizing the quantum Zeno effect
(i.e., repeated interrogation [5]). These demonstrations inspired
the development of IFM-based low-dose imaging techniques
[8–10]. Given the delicate nature of biological samples, the

utilization of IFM, particularly x ray IFM, presents a compelling
opportunity, as envisaged in Refs. [11,12].

There are several advantages to employing IFM with x rays
for biomedical imaging. The non-invasive capabilities of x rays
make them a unique tool for imaging of internal biological
structures, including bones and organs. Furthermore, commer-
cially available x ray detectors can reach nearly 100% efficiency
with low dark current and photon number resolving capabil-
ities over a very broad spectral range [13,14]. The primary
method for generating single x ray photons is through heralding
using spontaneous parametric downconversion (SPDC) [15,16].
Radioactive sources of Mössbauer nuclei with a cascade scheme
provide another method for generating and controlling single
γ-ray photons [17]. In addition, quantum recoil was recently
suggested as a promising method for generating tunable single
x ray photons [18]. Furthermore, an attenuated x ray coherent
source can also be used to generate single photons by post-
selection. Also, there is a wide variety of x ray interferometers
available [19–22]. For the purpose of x ray IFM, we note the
triple-Laue (LLL) [23] and Fabry–Pérot (FP) interferometers
[21,22]. The former can be used for a proof-of-concept demon-
stration as discussed below, and the latter can be employed for
implementing high-efficiency IFM [7,24]. We emphasize that at
first glance, there appears to be a potentially significant chal-
lenge for the implementation of x ray IFM. Absorption has
proven to be significant in almost all previously reported x ray
interferometers, typically reducing the efficiency of quantum
effects. However, we show that IFM exhibits notable resilience
to losses, unlike many other quantum effects and technologies.
Therefore, the utilization of x ray IFM holds particular promise
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Fig. 1. The Elitzur–Vaidman bomb tester scheme: a live bomb or
a dud is inserted into a symmetric lossless Mach–Zehnder interfer-
ometer (the dashed line indicates a vacuum input). In the absence
of a live bomb, a photon will be detected at port #2′ with certainty,
while port #1′ will never register a photon. In the presence of a
live bomb, a photon may be registered in port #1′, hence enabling
interaction-free detection.

in this regard. A first experimental demonstration of x ray IFM
can pave the way for the development of low-dose bio-imaging
schemes.

Here we analyze the feasibility of demonstrating this effect
in a lossy LLL system, in the single x ray photon regime.
We theoretically modeled the LLL system as being comprised
of four identical lossy beam splitters, such that each Laue
diffraction acts as a beam splitter. We identified two possible
detection schemes, characterized their efficiencies and capabili-
ties for reduced-dose detection, and concluded that an x ray IFM
demonstration is feasible even in the lossy regime.

2. PROPOSED EXPERIMENTAL SCHEME
Our proposal is based on the LLL interferometer [23], which
operates similarly to the Mach–Zehnder interferometer but
specifically designed for x rays. The LLL interferometer is con-
structed by cutting two wide grooves in a single crystal block
to form three plates, as depicted in Fig. 2(a). The first plate
operates as a beam splitter, the second plate operates as two
mirrors, and the third plate is another beam splitter. In each
plate a Laue diffraction occurs, such that different portions of
the beam are transmitted, diffracted, and absorbed. The ratio
between the transmission and diffraction is determined by the
width of the plates, incident angle, and the spectral profile of
the beam. Therefore, control of the ratio of transmission and
reflection is possible, by tuning the incident angle with respect
to Bragg’s angle. Controlling this ratio is crucial for optimizing
IFM efficiency, a point that will be further elucidated in the next
section. The same system can be theoretically described as a
Mach–Zehnder interferometer, in which each mirror is replaced
by a beam splitter, as depicted in Fig. 2(b). The system consists
of four identical beam splitters (BS1, BS2, M1, M2), with iden-
tical transmission (T̃), reflection (R̃), and loss (τ) coefficients.
We define the lossless transmission and reflection coefficients

Fig. 2. (a) The LLL system: the first plate (BS1) acts as the first
beam splitter. The second plate (M) acts as two mirrors. The third
plate (BS2) acts as the second beam splitter. (b) Theoretical represen-
tation of the LLL system: input operators undergo first beam splitter
(BS1). Each beam is then reflected by the two mirrors (M1, M2) and
each such mirror can be considered to be a beam splitter. The
reflected beam from the first mirror undergoes a phase shift φ, and
finally passes through the second beam splitter (BS2). Thereafter,
the reflected beam from the second mirror is completely absorbed
by an object. The dashed lines indicate vacuum input.

as (T , R), respectively, such that

R̃ = τR, T̃ = τT ,
R + T = 1, R̃ + T̃ = τ, (1)

where the parameter τ determines the loss, such that it is lossless
for τ = 1 and otherwise 0 ≤ τ<1. In addition, we consider a
possible phase term (P(φ)) and the possibility of an object lying
on one of the arms.

We utilize the Heisenberg picture, in which we evolve in
time the input operators. In our scheme, we consider four input
operators. The two input operators for BS1 are a1 and a2, and
the operators for the vacuum inputs of the mirrors are a3 (M1)
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and a4 (M2). Except for the phase term P(φ), all other optical
components are lossy and therefore, introduce noise. Conse-
quently, noise operators are included in the transformation of
each lossy component, and their magnitude is proportional to
the loss. Theoretically, each optical component is described by
a linear transformation acting on an input operator vector ain:

ain =

(︃
a
an

)︃
,

a =
⎛⎜⎜⎜⎝
a3

a1

a2

a4

⎞⎟⎟⎟⎠ , an =

⎛⎜⎜⎜⎜⎝
an1

an2
...

an8

⎞⎟⎟⎟⎟⎠
.

(2)

The input operator vector ain includes our physical input and
noise operators denoted as a, an, respectively.

Schematically, each optical component (OC) can therefore be
expressed as

OC =
(︃√
τUOC

√
1 − τnOC

0 1

)︃
, (3)

where UOC represents an optical component acting on the input
modes (a1, a2, a3, a4) weighted by the square root of the loss
parameter, and to introduce vacuum noise (for τ<1), we employ
nOC to distribute noise operators for the relevant modes [for
more details, see Eqs. (S14)–(S16) in Supplement 1]. Clearly,
the added noise is proportional to the loss, e.g., for the lossless
case (τ = 1) the added noise vanishes.

For this system, there are five possible transformations,
one for each beam splitter/mirror and for the phase term
(BS1, BS2, M1, M2, P(φ)); their explicit form is stated in the first
part of Supplement 1. Realistic representation of the optical
components presented here, can be effectively realized by mod-
eling Laue diffraction as a lossy beam splitter transformation as
shown in Section 4.

IFM detection relies on statistical contrast in output port
measurements between scenarios in which an object is present
and absent. The best possible contrast is achieved when we have
an ideal dark port (in the absence of an object), namely, a port for
which the detector will never measure a photon due to complete
destructive interference. In this case, a photon can be detected
at our designated dark port only if an object obstructs the inter-
ference. Since the object creates path distinguishability for the
photon, object detection can be achieved without it absorbing
any radiation. To quantify the efficiency of our detection, we use
the conventional IFM efficiency [5] figure of merit

η =
P(det)

P(det) + P(abs)
, (4)

where P(det) is the probability of detecting an object without
absorption by the object and P(abs) is the probability for the
object to absorb the photon. This figure of merit was originally
conceived for an ideal (lossless) system, for which it quantifies
the portion of detection events that are interaction-free (since
absorption indicates the presence of an object). However, it still
bears meaning in the general (lossy) case, since we are only
concerned with absorption events by the object which increase
the radiation dose.

Employing IFM can lead to detection with reduced dosage to
the object, provided absorption events can be used to extract
information on the presence of the object or that the IFM

efficiency exceeds 1
2 . In the ideal lossless case (see Fig. 1), a

loss of a photon can only be due to absorption by the object, and
therefore, provides a detection channel with 100% certainty.

Dose reduction would require comparing the dosage in the
object for a fixed number of detections with the case of direct
illumination. In the case of direct illumination with single x ray
photons and perfect detector behind the completely absorbing
object, for each detection event (no click on the detector) there
is one unit of dosage. To quantify dose reduction, we define

ηdose =
#detection events − #absorption events by the object

#detection events
.

(5)
This quantity represents the percentage of dose reduction
achieved in the detection. For example, when ηdose = 1 means
that a detection was made without any radiation to the object. In
direct illumination, every detection event is also an absorption
event, and therefore ηdose

direct det. = 0. This means that the threshold
for dose reduction is ηdose>0, for which there are more detection
events than absorption events and thus a reduction of dosage is
achieved.

In an ideal (lossless) IFM scheme, there are two detection
channels, one is by IFM detection and the other by absorption
by the object. Considering only these detection channels (while
disregarding any other event), the probability for IFM detection
is given by η (see Eq. (4)) and the probability of detection
by absorption (by the object) is given by its complement η′ =

P(abs)
P(det)+P(abs) . Given these, we find that for an ideal (lossless) IFM
scheme

ηdose =
(η + η′) − η′

η + η′
= η. (6)

This means that in the lossless case, the definition of ηdose

coincides with the definition of the IFM efficiency (Eq. (4)).
However, this will not be true in a lossy system. For a lossy
interferometer, a loss event will not indicate with 100% certainty
the presence of an object. Instead, when a photon is lost, it will
be due to absorption by the object or the interferometer. Despite
this ambiguity, it is still possible to distinguish between the two
scenarios. For the purpose of detection by absorption, we only
need consider events which may be distinguished statistically
by the presence or absence of an object while disregarding IFM
detection events. The remaining events are the loss of a photon
and a detection of a photon by the other remaining port (we shall
refer to it as the bright port) denoted in Fig. 1 as #2′. In the ideal
(lossless) IFM scheme, readings in the bright port would not
yield any information regarding the presence of an object, since
such readings are possible in both cases. However, these read-
ings become important when the interferometer is lossy, since
the relation between the probability of losing a photon (Pl) and
detecting a photon in the bright port (Pb) depend on the presence
or absence of an object. This difference allows in principle for
us to detect an object in absorption events. We therefore define
the following distinguishability estimator:

C(nl, nb)

=
P(nl, nb |object)P(object)

P(nl, nb |object)P(object) + P(nl, nb |no object)P(no object)
,

(7)
where (nl, nb) are the number of events for losing a pho-
ton and measuring a photon in the bright port, respectively;
(P(nl, nb |object), P(nl, nb |no object)) are the conditional proba-
bilities for the distribution of events (nl, nb), given the presence or

https://doi.org/10.6084/m9.figshare.27919101
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absence of an object, respectively; and (P(object), P(no object))
are the prior probabilities for the presence and absence of an
object, respectively. With no prior knowledge, we can assume
that P(object) = P(no object) = 1

2 . These binomial probabilities
are given by

P(nl, nb |s) =
(︃
nl + nb

nl

)︃
P̃nl

l (s)P̃
nb
b (s),

P̃l(s) =
Pl(s)

Pl(s) + Pb(s)
, P̃b(s) =

Pb(s)
Pl(s) + Pb(s)

,
(8)

where s ∈ {object, no object} and Pl(s) = 1 −
∑︁

j∈All ports Pj(s).
In a real experiment, the confidence C(nl, nb) can be calcu-

lated and updated with each additional experimental run (while a
photon has yet to reach the dark port) and can be used to estimate
the presence or absence of an object. It represents the degree of
confidence an object is present, deduced from the statistical data
the experimentalist accumulated. For the purpose of a theoret-
ical analysis, the expected confidence C ≡ C(nl, nb)object can be
regarded as the probability of success in detecting an object via
absorption events. It can be calculated using the average values
of (nl, nb) for a single absorption event by the object, such that
nl =

Pl(object)
P(abs) , nb =

Pb(object)
P(abs) . Therefore, the dose reduction is given

by

ηdose =
(η + Cη′) − η′

η + Cη′
=

P(det) − (1 − C)P(abs)
P(det) + CP(abs)

. (9)

The confidence level required for dose reduction is C>1 −
P(det)
P(abs) .

3. DETECTION CONFIGURATIONS
Generally, depending on the type of interferometer used,
there can be several configurations for which a dark port is
achieved, and for each configuration there is a different detection
efficiency.

For single photons entering the interferometer (Fig. 2) in the
absence of an object, the mean photon number at the output ports
is shown in Table 1. In the presence of an object, the mean photon
number at the output ports is shown in Table 2 and the variance
in photon number in these tables is (∆2Nk) = ⟨Nk⟩(1 − ⟨Nk⟩).

Note that due to the symmetry of the LLL system, these results
are valid for a general beam splitter, and do not depend on the
relative phase between the output modes of the beam splitter
(provided they are identical).

We consider two configurations in which a dark port is achiev-
able and, correspondingly, two detection configurations which
depend on the transmission (T̃), reflection (R̃), and the phase φ
of the interferometer. In the first configuration we consider, the

Table 1. Mean Photon Number at the Output Ports for
Input States a†

1 |0⟩ = |1⟩1a and a†

2 |0⟩ = |1⟩2a in the Absence
of an Object

Ports \
Measurements

Input State
a†

1 |0⟩ = |1⟩1a

Input State
a†

2 |0⟩ = |1⟩2a

Port #3 (DM1 ) \⟨N3⟩ R̃T̃ T̃2

Port #1 (D1) \⟨N1⟩ R̃3 − 2R̃2T̃ cos(φ) +
R̃T̃2

4R̃2T̃ cos2 (︁ ϕ
2
)︁

Port #2 (D2) \⟨N2⟩ 4R̃2T̃ cos2 (︁ ϕ
2
)︁

R̃3 − 2R̃2T̃ cos(φ) +
R̃T̃2

Port #4 (DM2 ) \⟨N4⟩ T̃2 R̃T̃

Table 2. Mean Photon Number at the Output Ports for
Input States a†

1 |0⟩ = |1⟩1a and a†

2 |0⟩ = |1⟩2a in the Presence
of an Object

Ports \
Measurements

Input State
a†

1 |0⟩ = |1⟩1a

Input State
a†

2 |0⟩ = |1⟩2a

Port #3 (DM1 ) \⟨N3⟩ R̃T̃ T̃2

Port #1 (D1) \⟨N1⟩ R̃3 R̃2T̃
Port #2 (D2) \⟨N2⟩ R̃2T̃ R̃T̃2

Port #4 (DM2 ) \⟨N4⟩ T̃2 R̃T̃

reflection (R̃) is equal to the transmission (T̃) and is thus referred
to as “symmetric”. In the second configuration we consider
R̃ ≠ T̃ and it is thus referred to as “asymmetric”.

In addition, since the number of photons at each of the
ports depend on the physical parameters of the system, we can
characterize the system and determine (R̃, T̃ , cos2(

ϕ

2 )) by these
measurements (see Supplement 1).

3.1. Symmetric

The “symmetric” detection configuration is achieved when

R̃ = T̃ , φ = 0. (10)

These conditions lead to a complete destructive interference at
port #1 (#2) for the input state |1⟩1a (|1⟩2a), which we refer to as
a dark port.

This configuration is akin to the well-known case consid-
ered by Elitzur and Vaidman [3], for a lossless symmetric
Mach–Zehnder.

The IFM detection probability Pdet, namely, the probability to
detect an object without absorption by the object is

Pdet =
τ3

8
. (11)

The IFM detection efficiency in this case is (see Supplement 1
for more detail)

η(Symmetric)(τ) =
τ

2 + τ
. (12)

For the lossless case τ → 1, we reproduce the known efficiency
of η(Symmetric)(τ → 1) ≡ ηmax =

1
3 , which is also equivalent to the

dose reduction ηdose. It is worth noting that due to symmetry, the
efficiency is independent of the input photon port number (#1
or #2). The probability of detecting an object by either IFM or
absorption by the object is given by

P(tot. det) =
τ2

4

(︂ τ
2
+ C

)︂
. (13)

More details concerning the confidence C can be found in
Supplement 1. Note that for (τ = 1 ⇔ C = 1) the total detec-
tion probability reaches its maximal value P(tot. det) = 3

8 . The
dose reduction in this case (see Fig. 3) is possible for τ>0.705
and has the maximal value of ηdose

max =
1
3 in the lossless case.

The dose reduction in this case is considerable for in the low-
loss regime; for 10%–15% loss, a dose reduction of ηdose ∼

0.108–0.15. This configuration allows good IFM efficiencies
with significant dose reduction in the low-loss regime and is
experimentally since it does not require fine-tuning a phase
term.

https://doi.org/10.6084/m9.figshare.27919101
https://doi.org/10.6084/m9.figshare.27919101
https://doi.org/10.6084/m9.figshare.27919101
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Fig. 3. Dose reduction parameter (ηdose) (solid black line) and
total detection probability (P(tot. det)) (solid red line) for the
symmetric configuration as a function of the loss parameter τ.

3.2. Asymmetric

The “Asymmetric” detection configuration is achieved for φ =
π, independently of the values of (R̃, T̃).

Following these conditions, port #2 (#1) is dark for the input
state |1⟩1a (|1⟩2a). In this configuration, the detection efficiency
given by

η(Asymmetric)(R̃, T̃) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
η1 =

R̃
1 + R̃

, for input a†

1 |0⟩ = |1⟩1a,

η2 =
T̃

1 + T̃
, for input a†

2 |0⟩ = |1⟩2a,
(14)

depends on the input state, namely, whether the incident photon
entered port #1 (a†

1 |0⟩ = |1⟩1a) or port #2 (a†

2 |0⟩ = |1⟩2a), and on
the values of (R̃, T̃) (see Supplement 1 for more detail). The
probability of detecting an object by either IFM or absorption
by the object [see Fig. 4(b) and Fig. 5(b)], is given by

P(tot. det; R̃, T̃ , C)

=

{︄
P1(tot. det) = R̃T̃

(︁
R̃ + C

)︁
, for input a†

1 |0⟩ = |1⟩1a,
P2(tot. det) = R̃2

(︁
T̃ + C

)︁
, for input a†

2 |0⟩ = |1⟩2a.
(15)

More details concerning the confidence C can be found in Sup-
plement 1. The total detection probability is maximal for R =
( 1
√

3 , 1) for (P1(tot. det), P2(tot. det)), respectively, with maximal

values of (Pmax
1 (tot. det) =

√︂
4
27 , Pmax

2 (tot. det) = 1) at τ = 1. The
dose reduction for the asymmetric configurations has relatively
similar profile (see Fig. 4(a) and Fig. 5(a)) and for both a dose
reduction is possible for τ> 1

2 . The maximal dose reduction is
ηdose

max =
1
2 in the lossless case. This configuration allows a substan-

tial dose reduction in the low-loss regime. For (25%, 15%, 5%)

loss, a dose reduction of ηdose ∼ (0.2, 0.259, 0.31) can be
reached, respectively. The total detection probability pro-
file P2(tot. det) decreases rapidly for increasing values of T ,
which suggests that this configuration is sub-optimal for high
values of ηdose

2 as it require longer runtime compared with
η(dose)

1 . On the other hand, the first configuration can pro-
vide high dose reduction with reasonable probabilities and is

Fig. 4. (a) Dose reduction parameter (ηdose
1 ) and (b) the total

detection probability [P1(tot. det)] for the asymmetric configura-
tion, which corresponds to the input state |1⟩1a, plotted a function
of the reflection coefficient R for various values of the loss parame-
ter τ. The orange line is for 25% (τ = 0.75) loss, the purple line is
for 15% (τ = 0.85), the blue line is for 5% loss (τ = 0.95), and the
red line is for the lossless case (τ = 1).

therefore preferable, in particular if the experimental runtime
is limited.

4. LOSSY BEAM SPLITTER MODELING BASED
ON LAUE DIFFRACTION
The theoretical description shown in previous sections relied on
the possible modeling of Laue diffraction as a transfer matrix
between input and output field modes (see Fig. 6). To accom-
modate this general formalism for x ray optics, here we show
such modeling. It is based on the quantized Takagi–Taupin equa-
tions [25] for the field operators a1(z) and a2(z) accompanied by
Langevin operators to account for loss,

∂a1(z)
∂z

= −

(︃
α +

i∆kz

2

)︃
a1(z) + iκa2(z) +

√
2αf1(z),

∂a2(z)
∂z

= −

(︃
α −

i∆kz

2

)︃
a2(z) + iκa1(z) +

√
2αf2(z).

(16)

The coefficients α, κ, ∆kz are the absorption coefficient, cou-
pling coefficient and phase mismatch along the optical axis,

https://doi.org/10.6084/m9.figshare.27919101
https://doi.org/10.6084/m9.figshare.27919101
https://doi.org/10.6084/m9.figshare.27919101
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Fig. 5. (a) Dose reduction parameter (ηdose
2 ) and (b) the total

detection probability (P2(tot. det)) for the asymmetric configura-
tion, which corresponds to the input state |1⟩2a, plotted as function
of the transmission coefficient T for various values of the loss param-
eter τ. The orange line is for 25% (τ = 0.75) loss, the purple line is
for 15% (τ = 0.85), the blue line is for 5% loss (τ = 0.95), and the
red line is for the lossless case (τ = 1).

Fig. 6. (a) Fields (Ẽ1, Ẽ2) with wave vectors (k1, k2) at incident angles (θ1, θ2), respectively, undergo Laue diffraction with respect to the
reciprocal lattice vector G by a crystal of width z0. (b) Analogous representation of Laue diffraction as a beam splitter in which input operators
(a1, a2) are transformed to output operators (b1, b2).

respectively. Their explicit form is given by

α = σ̃0ωγρ0,
κ = σ̃0(ω

2 − ω2
0)ρG,

∆kz = (k2 − k1 − G) · ẑ,

σ̃0 = −
eµ0c

2men cos(θb)

ω

ω2(1 + γ2) − ω2
0
.

(17)

When the incident angles slightly deviate from Bragg’s condi-
tion by a small parameter δ, such that θ1 = θb + δ, θ2 = θb − δ,
the phase mismatch can be approximated ∆kz ≈ |G|δ. The
Lorentz model was used to describe the linear response for a
periodic charge density

ρ(x) =
∑︂

G

ρGeiG·x, (18)

such that ρG is the charge density Fourier component associated
with reciprocal lattice vector G and ρ0 is the mean electron
charge density. The parameters −e, me, c, µ0, ω0, ω, γ, n, θb

are the electron’s charge, electron’s mass, speed of light in
vacuum, permeability of free space, resonance frequency of
the Lorentz oscillator, field’s frequency, damping coefficient,
refraction index, and Bragg’s angle, respectively. Following
the solution of these equations, the relation between the input
operators a = (a1(0) ≡ a1, a2(0) ≡ a2) and the output operators
(a1(z0), a2(z0)) at z0 is given by

a1(z0) = e−αz0 (t∗(z0)a1 + ir(z0)a2) +
√

1 − e−2αz0 an1,

a2(z0) = e−αz0 (ir(z0)a1 + t(z0)a2) +
√

1 − e−2αz0 an2,
(19)

where
t(z) = sech(ϕ) cos(cosh(ϕ)κz + iϕ),
r(z) = sech(ϕ) sin(cosh(ϕ)κz),

(20)

and sinh(ϕ) = −
∆kz
2κ . The addition of the bosonic noise operators

an = (an1, an2) is required to ensure the commutation relations
and their contribution is proportional to the loss. Rewriting this
relation in terms of the output operators b = (b1, b2), as depicted
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Fig. 7. Angular dependence of the lossless reflection (R) and
transmission (T) coefficients (see Eq. (1)) on the mismatch angle δ
in units of microradians for silicon crystal in the low-loss regime
(τ ≈ 0.994).

in Fig. 6(b), yields

b(z) = e−αzbs(z)a +
√

1 − e−2αzan, (21)

where
bs(z) =

(︃
ir(z) t(z)
t∗(z) ir(z)

)︃
. (22)

The transformation consists of two parts. The first term corre-
sponds to a standard beam splitter transformation [bs(z)] which
is attenuated by a factor of e−αz due to absorption. The pres-
ence of loss gives rise to the second term which describes
the additional noise. Controlling the transmission T = |t|2 and
reflection R = |r |2 coefficients can be achieved by tuning the
incident angle and thus modifying ∆kz. To illustrate this point,
we show the angular dependence of (R, T) on the mismatch
angle δ in Fig. 7, in the case of silicon with z0 = 200 µm, photon
energy of ℏω = 30 keV and diffraction plane of (2, 2, 0).

In this example, e−2αz0 ≈ 0.994 therefore, the loss is negligible
and adequate control on R, T is possible by angular deviations of
the order of approximately microradians. Furthermore, adequate
tunability of R, T is feasible in the lossy domain as depicted
in Fig. 8, which corresponds to the case of silicon with z0 =

500 µm, photon energy of ℏω = 18 keV, diffraction plane of
(2, 2, 0), and absorption of 1 − e−2αz0 ∼ 0.468. In this case, the
oscillation’s frequency is larger which provides finer tunability
of R, T . Despite the substantial loss (τ ≈ 0.532), our approach
demonstrates notable resilience with achievable IFM efficiencies
of approximately η(Symmetric) ∼ 0.21 and η(Asymmetric) ∼ 0.34. This
example shows that high IFM efficiency can be obtained even
when there is substantial loss.

5. DISCUSSION
We have shown that IFM (and in particular, x ray IFM with the
LLL interferometer) is feasible even with significant loss. Our
analysis highlights the quantitative robustness of IFM to loss,
despite being a coherence-based phenomenon. The effect of loss
inherently decreases the overall detection efficiency originating
from both IFM events and absorption events, since both the IFM
efficiency and the confidence level in detection via absorption,

Fig. 8. Angular dependence of the lossless reflection (R) and
transmission (T) coefficients (see Eq. (1)) on the mismatch angle
δ in units of microradians for silicon crystal in the lossy regime
(τ ≈ 0.532).

decrease with loss. Despite this limitation, we have shown that
employing IFM as a detection scheme can lead to dose reduction
with an impressive resilience to loss.

We have analyzed two IFM detection configurations with IFM
efficiencies ranging from 1

3 to 1
2 and dose reduction of up to half

compared with direct detection. The symmetric configuration is
slightly simpler to implement, since it does not require a fine-
tuning phase. In this configuration, dose reduction is achievable
under loss of up to ∼ 30% (τ>0.705), and at best can asymptot-
ically reach ηdose → 1

3 (in the absence of loss). In the presence
of low-loss (10 − 15%), reasonable dose reduction can still be
reached (ηdose ∼ 0.108 − 0.15) and thus it is a promising exper-
imental configuration, provided there is an adequate control on
the reflection (R̃) and transmission (T̃) coefficients. The asym-
metric configuration is preferable for a scenario in which a
well-controlled phase can be introduced (without adding loss) to
the setup. In addition, it can be important for cases in which there
is limited control of the ratio between the reflection and trans-
mission coefficients (R̃, T̃). In this configuration dose reduction
is achievable under loss of up to 50% (τ> 1

2 ), and at best can reach
asymptotically ηdose → 1

2 (in the absence of loss), if the ratio R̃
T̃

can be controlled. In the presence of low-loss (10%–15%), good
dose reduction can be reached (ηdose ∼ 0.259–0.285) and thus
can be used to demonstrate efficient x ray IFM with significant
dose reduction despite the presence of loss.

Furthermore, due to the symmetry of the LLL setup, the
results presented here are independent of the way one mod-
els the beam splitters (provided they are identical). However, in
order to properly design an LLL system in practice, it is instruc-
tive to have a model of a lossy beam splitter which is based on
Laue diffraction. For this purpose, we constructed such a model
and showed that adequate control of the ratio R̃/T̃ is possible
while remaining in the low loss regime as well as in the lossy
regime. Such tunability suggests that x ray IFM can be demon-
strated with high efficiency in the presence of significant loss in
the system.

In addition, we have presented a convenient method to exper-
imentally characterize the properties of the interferometer. This
method allow for the determination of the key parameters R̃, T̃ ,
and cos2(

ϕ

2 ), using only the measurements of the outgoing
ports.
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In conclusion, our study demonstrates the feasibility of x
ray IFM using the LLL interferometer. A successful demon-
stration of IFM in the x ray regime has great potential
for delving into more advanced schemes for high efficiency
IFM, e.g., high efficiency interrogation and imaging based
on the quantum Zeno effect, as well as x ray IFM for semi-
transparent objects. These developments lend support to the
advancement of low-dose x ray imaging techniques based on
IFM.
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