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Chemical element mapping is an imaging tool that provides essential information about composite materials, and it is
crucial for a broad range of fields ranging from fundamental science to numerous applications. Methods that exploit
x-ray fluorescence are very advantageous and are widely used, but require focusing of the input beam and raster scanning
of the sample. Thus, the methods are slow and exhibit limited resolution due to focusing challenges. Here, we demon-
strate an x-ray fluorescence method based on computational ghost imaging that overcomes those limitations since it does
not require focusing and show that when it is combined with compressed sensing the total measurement time can be sig-
nificantly reduced. Our method opens the possibility to significantly enhance the resolution of chemical element maps
and to extend the applicability of x-ray fluorescence inspection to new fields where the measurement time is a critical
parameter. ©2022Optical Society of America under the terms of theOSAOpen Access Publishing Agreement
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1. INTRODUCTION

x-ray fluorescence (XRF) is a powerful method to identify and map
the chemical compositions of samples with intriguing applications
that are exploited in a broad range of fields from fundamental
science to industry and cultural heritage. Examples for scientific
disciplines where XRF plays a prominent role include materials
science, electrochemistry [1], biology [2], paleontology [3], and
archaeology [4]. Industrial applications include, for example,
metal analyzers for small parts that are produced by the automotive
and aerospace industries [5]. In cultural heritage, XRF is very
useful in providing information on the hidden layers of famous
paintings [6].

The basic principle of XRF is simple and is based on the x-ray
fluorescence process in which x-ray radiation is used to excite core
electrons in the sample. When the core electrons are excited or
ejected from the inner shells of the atoms, holes are formed in those
shells. The electrons can return to their ground state or outer elec-
trons can fill the holes leading to the emission of x-ray radiation at
photon energies that correspond to the characteristic atomic lines.
The spectrum of the emitted radiation (the fluorescence spectrum)
is detected and analyzed, and since each chemical element has
unique emission lines, the fluorescence spectrum is used to charac-
terize the elemental composition of the sample. The detection can
be done by energy-resolving detectors that are simple to use and
available components with sufficient energy resolution.

In its simplest form, XRF provides no spatial information
since the detector collects the radiation from large areas; in recent
decades, however, spatially resolved XRF techniques have been
developed and their advent opens appealing opportunities in many
fields [1,3,4,6]. However, the main challenge for spatially resolved

XRF measurements is that, in contrast to transmission measure-
ments, the fluorescence is nondirectional, which means that the
application of pixelated detectors is a great challenge. Instead,
in most cases, 2D chemical maps are reconstructed by focusing
the impinging beam and raster-scanning the sample. With this
procedure, the spatial information is retrieved since at each mea-
surement point only a small portion of the sample is irradiated and
the resolution is determined by the spot size of the input beam [7].
When the spot size is on the order of several microns, the method
is called micro-XRF. Extensions to 3D are also possible by either
computed tomography [8,9] or confocal x-ray microscopy [10,11].

Despite being very successful and widely used, XRF faces two
major challenges that hamper its performance and the extension
of its applicability to further disciplines: (1) focusing of x-ray radi-
ation is difficult, especially at high photon energies, so the ability
to use small spot sizes in a broad photon energy range is unique
to very few synchrotron beamlines and x-ray free electron lasers
[7]. To date, the highest resolution achieved with tabletop sources
is several microns [12]. However, it is achievable only in a very
limited range of photon energies and at the expense of a significant
loss of the input flux. (2) In almost all practical implementations of
micro-XRF, the spatial information is obtained by raster scanning.
This is a very slow process since the scan is done over every point of
sample. For large samples and for 3D imaging, the measurement
time is several days.

We note reports on several methods for full-field XRF, which
are implemented by photon-energy-resolving pixelated detectors,
with capabilities to provide 2D chemical maps in a single frame
[13–16]. These techniques are performed by using either sim-
ple [13,16] or coded [14,15] apertures in front of the pixelated
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detector to address the challenge of the blurring due to the nondi-
rectionality of the fluorescence. However, the spatial resolution
and the field of view (for a fixed number of pixels) are limited
[13–15]. In addition, because the quantum efficiency of the detec-
tors drops very quickly at photon energies higher than 20 keV,
there are inflexible constraints on the distance between the sample
and the detector, and the measurements cannot provide 3D infor-
mation without additional lenses [16], which introduces severe
challenges. Another approach to reduce the duration of the XRF
measurements is based on scanning procedures [17,18] and infor-
mation that is obtained from the sample during the scan to improve
the scanning effcieny [19]. This is a very interesting direction, but
the setup is different and the focusing of the input x-ray beam is still
required.

Here, we propose and demonstrate a proof-of-principle exper-
iment for what we believe, to the best of our knowledge, is a new
and fast, XRF approach with potentially high spatial resolution
that solves those challenges by using structured illumination
and correlation. The main advantages of our approach are that
it does not require focusing and that the measurement time can
be significantly reduced by using compressed sensing (CS) or
artificial intelligence (AI) algorithms since our method requires a
significantly smaller number of measurement points compared to
standard techniques.

Our approach that we denote as x-ray computational ghost
fluorescence (GF) is related to the computational ghost imaging
(GI) approach proposed by Shapiro in 2008 [20]. While the initial
motivation of the computational GI approach was to show that
quantum correlations are not essential for GI, it evolved to many
interesting directions with intriguing potential applications and
has been investigated extensively in a broad range of wavelengths
[20–35] from radio waves [23] to X-rays [26,29–32], and even
with neutrons [36], and electrons [37]. Computational GI can
be used to reconstruct 2D and 3D images [28] and, by using
CS [35] or AI [22], the measurement time can be significantly
reduced. While several schemes for GI have been demonstrated
with X-rays [26,29–32,38–41], in the present work we replace
the measurement of the transmission or reflection of the object
by the measurement of the x-ray fluorescence, which carries the
information on the chemical elements; hence, we can use it for
chemical mapping.

We note that the GI approach has been used in the visible range
for the measurement of the fluorescence [27,33,34]. However,
long wavelength fluorescence measurements are not element
specific and, in contrast to our method, cannot be used for chemi-
cal element mapping. Moreover, the implementation of GI for
XRF, where the main alternative is raster scanning, expresses the
strengths of the GI approach, which are the ability to provide
spatial information without lenses or mirrors and the natural suit-
ability for compressive measurements, which can be used to reduce
the measurement time [42].

2. IMAGE RECONSTRUCTION PROCEDURE

Our procedure relies on a two-step approach for the implemen-
tation of computational GI [32]. A flowchart that illustrates the
procedure is shown in Fig. 1(a). In both steps, the x-ray beam
irradiates a mask with inhomogeneous transmission that induces
intensity fluctuations in the beam. The goal of Step I is to measure
the intensity fluctuations that the mask introduces at the plane of
the sample for each of the realizations that we use in Step II. As we

illustrate in Fig. 1(b), this is done in the absence of the object and
by mounting a pixelated detector at the plane at which we mount
the object in Step II. In Step II, which is depicted in Fig. 1(c), we
remove the pixelated detector, insert the object, scan the mask at
the same positions as in Step I, and measure the x-ray fluorescence
with two photon-energy-resolving silicon drift detectors (SDDs)
located at two different positions, as shown in Fig. 1(c). We denote
the detector that is located upstream the sample as detector R
and the detector located downstream from the sample as detector
T. We use two detectors to show that the chemical map can be
reconstructed by mounting the detector at any direction around
the sample and each of the maps is reconstructed using the data
from a single SDD.

After completing the measurements for the entire set of real-
izations, we obtained two sets of data. One contains the patterns
of the mask (measured in Step I) and the other contains the cor-
responding intensities for each of the fluorescence emission lines
(measured in Step II). To reconstruct each shape of the emitters, we
separately exploit the following reconstruction procedure for each
chemical element. We represent the spatial distribution of each
chemical element by a vector x. Another vector T, which includes
n realizations, represents the intensities of the corresponding emis-
sion lines measured by the each of the SDDs. The mask patterns
are represented by the matrix A, for which every row is a single
realization. The vector T is equal to the product of the matrix A and
the vector x:

Ax= T. (1)

To find the vector x with a minimal number of realizations,
and consequently to reduce the measurement time, we used the
CS approach, which uses a priori knowledge on the structure of
the image. We used the protocol of “total variation minimization
by augmented Lagrangian and alternating direction algorithms”
(TVAL3) [43]. The basic concept of the protocol is that the gra-
dient of many objects in nature can be represented by a sparse
matrix. For each chemical element, the vector x is reconstructed by
minimizing the augmented Lagrangian:

min
x

m∑
i=1

‖Di x‖2 +
µ

2
‖Ax− T‖2

2 s.t x≥ 0, (2)

with respect to the L2 norm. Here, Di x is the i th component of the
discrete gradient of the vector x, and µ is the penalty parameter of
the model. Here, we setµ= 29). After we reconstruct the image for
each of the chemical elements, we overlay the images to reconstruct
the chemical element map.

3. RESULTS

The source we used in this experiment was a rotating copper anode
and the mask was a sandpaper with an average feature size of about
40 µm. Since we used a collimator before the mask, the intensity
patterns we measured in Step I [see Fig. 2(a)] are proportional
to the spatial variations of the transmission of the mask. Similar
to GI, the spatial resolution of our method is determined by the
width of the autocorrelation function of the mask that modulates
the input x-ray beam [44]. The autocorrelation function of the
mask is presented in Fig. 2(b), while the 1D horizontal and vertical
projections are presented in Figs. 2(c) and 2(d), respectively. The
autocorrelation function is nearly isotropic and the FWHM of the
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Fig. 1. Image reconstruction procedure and schematics of the experimental setup. (a) Flowchart of the reconstruction procedure. In Step I, we measure
the intensity patterns induced by the mask in the absence of the object. In Step II we measure the fluorescence from the object. Schematics of the experimen-
tal setup for Steps I and II are shown in (b) and (c), respectively.

curve are 33± 7 µm and 31± 7 µm for the horizontal and vertical
axes, respectively.

The object we imaged contains three small pieces of iron,
cobalt, and brass (Cu3Zn2). The direct image and the fluores-
cence spectrum of the objects are shown in Figs. 2(e) and 2(f ),
respectively.

Our method can provide the chemical map by mounting the
detectors at any position around the sample and at any distance as
long as they collect the fluorescence as emitted from the sample.
To display this ability, we present the images reconstructed by our
method for the iron and cobalt objects in Figs. 3(a) and 3(b) for
detector R and detector T, respectively. The images were recon-
structed using 550 realizations and the CS procedure described
above. The agreement of the chemical element maps we recon-
structed with the real arrangement and structures of the iron
and cobalt objects is excellent and indicates the reliability of our
method. The resolution of our method is clearly much higher than
the spot size of our experiment that was about 1.5 mm, and we

were able to resolve the iron and cobalt objects that are separated
by a gap of less than 200µm. In addition, we show very clearly that
our method can be used to eliminate strong background noise.
The images of the iron and cobalt objects are very clear, despite
the strong background. Note that the copper emission lines in
Fig. 2(f ) are stronger than the emission lines of the iron and the
cobalt by about a factor of 7. The brass object, however, could not
be reconstructed because of the proximity of its emission lines to
the emission lines of the radiation of our source.

After successfully showing the ability to reconstruct chemical
maps with our method, we then demonstrate that we can use CS to
reduce number of realizations; hence, to reduce the measurement
time. To quantify the image quality of the reconstructed chemical
maps we calculated the peak SNR (PSNR) as a function of the
number of realizations. We plot the PSNR of the reconstructed
chemical maps we measured with detector T as a function of the
number of realizations in Fig. 4. The chemical maps for various
compression ratios (CR) are displayed next to the graph. The CR is
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Fig. 2. (a) Example of the reference data (the intensity fluctuations induced by the mask). (b) Autocorrelation function of the intensity pattern induced
by the mask averaged over all realizations. The blue and green lines indicate the horizontal and vertical cross sections shown in (c) and (d). The blue and
green dots are the measured data for the horizontal and vertical cross sections, respectively, and the red curves are interpolation functions. In (e) and (f ) nor-
malized direct image and fluorescence spectrum of the object, which consists of iron, cobalt, and brass objects are shown. The red line is the spectrum in the
absence of the sample and the blue line is the spectrum when the sample is present. The emission lines are indicted near each of the peaks.

Fig. 3. Reconstructed chemical element maps by x-ray GF using
(a) detector R and (b) detector T. The red and green areas indicate the
areas containing the iron and cobalt elements, respectively.

defined by the number of pixels in the map divided by the number
of realizations we used for the reconstruction [37]. The PSNR is
calculated by

PSNR= 10 log

(
peakval2

MSE

)
, (3)

where peakval is the maximum possible pixel value of the image
and MSE is the mean square error between the reconstructed image
and the direct image [Fig. 2(e)]. We calculated the joint PSNR of
the cobalt and the iron images as the average between the PSNR
values of the images.

The maps we describe in the present work contain 1010 pixels,
which is also the number of sampling points if we were using stand-
ard micro-XRF. Consequently, the CR expresses the reduction
of the measurement time that our method provides. With our
technique, we can see a clear image even after 144 realizations,
which corresponds to a CR of 7 and identify the objects even with
a CR of 20. The important consequence of this result is that with
our method, the chemical maps can be measured in much shorter

Fig. 4. PSNR of the reconstructed GF image measured with detector
T as a function of the number of realizations. The compressive chemical
element maps for various compression ratio (CR) values are displayed near
the corresponding points.

times compared to standard micro-XRF methods since the number
of realizations with our method is smaller than the number of
sampling points with standard XRF methods.

4. DISCUSSION

We now discuss several important properties and implications
of our method and begin with the spatial resolution. To evaluate
the performance of the method and its potential to reconstruct
high-spatial resolution chemical maps, we need to compare the
resolutions of the reconstructed maps with the resolution of the



Research Article Vol. 9, No. 1 / January 2022 / Optica 67

Fig. 5. Comparison of the resolutions of the chemical map and the direct image. Description of the edge cross sections for the (a) direct image and
(b) chemical map. (c) and (d) Normalized intensity as a function of the position for cross sections I and II, respectively. The blue and magenta dots are the
transmission and GF image values, respectively.

direct image of the objects and with the theoretical prediction for
GF based on the measured autocorrelation function of the mask.

Since the sample we investigated includes objects with sharp
edges, it is possible to estimate the resolution from the smearing of
the edges. We estimate the widths of the slopes of the cross sections
of the selected regions near the edges in the chemical map and com-
pare them to the corresponding widths of the same objects in the
direct image, as shown in Fig. 5. In Figs. 5(a) and 5(b), we describe
the selections of the two cross sections (I and II) that are displayed
for the chemical map and for the direct image, respectively. In
Figs. 5(c) and 5(d), we plot the cross sections I and II, respectively.
To compare to the FWHM of the correlation function, we esti-
mated the half width of the slope of the cross sections. For the two
edges presented in Fig. 5, we found that the widths of the slopes for
the chemical map are 35± 7 µm and 31± 7 µm for cross sections
I and II, respectively, and the corresponding widths for the direct
images are 19± 7 µm and 12± 7 µm. The difference between the
resolutions of the GF and the direct image exists since the resolu-
tion of GF is determined by the correlation function length of the
mask, and is about 30 µm, as we discussed above. The resolution
of the direct image, however, is determined by the resolution of
the pixelated detector, which is about 15 µm. Similar results are
obtained for the widths of the other edges and they are comparable,
as expected, to the width of the autocorrelation function of the
mask discussed above.

The resolution we demonstrated in this work is much higher
than the spot size we used, which was about 1.5 mm, and it is
limited by the feature sizes of the mask we used. The implication is
that our method can be used for high-resolution chemical mapping
at resolutions that are not limited by the focusing capabilities of a
system. It is possible to improve the resolution of our method using

masks with smaller features. Recent work shows x-ray GI recon-
structions with resolutions below 10 µm using masks that were
fabricated by photolithography [26,29,31] or by electroplating
[26,31]. The same masks can be used for x-ray GF. Importantly,
it is possible to fabricate masks with submicron features using
nanotechnology techniques like e-beam lithography and x-ray
photolithography. Since the feature size essentially is the parameter
that controls that resolution of our method, it opens the possibility
for submicron resolution XRF with tabletop sources.

Next, we consider the impact of the CS and the intensity
fluctuation magnitude on the image quality since we are inter-
ested in the reduction of the measurement time with respect to
standard XRF methods, but without deteriorating the image
quality. While a high CR can lead to significant reduction in the
measurement time it may reduce the image quality and, as we
show below, the quality also depends on the magnitude of the
intensity fluctuations. Because the image quality in GI methods
is determined by the ratio between the variations of the detected
intensities for the different realizations to the noise, we define the
fluctuation-to-noise ratio (FNR) as

FNR=
std (s )

〈
√

s 〉
, (4)

where s is the set of the intensities detected at a specific emis-
sion line during entire measurement, 〈·〉 is the average over all
realizations, and std is the standard deviation.

We simulated the experiment and calculated the PSNR of the
reconstructed cobalt and iron images as function of the FNR for
various CRs. In Fig. 6, we show the results of our simulations. The
solid lines are the corresponding fitting curves that we added as
guides for the eye. From the results presented in Fig. 6, we see that
for FNRs below 1, the PSNR is very small. These values indicate, as
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Fig. 6. Dependence of the reconstruction quality of the chemical map on the CR and FNR. The points are the simulation results, and the lines are the
corresponding fitting curves to show the trend of the results. See further details in the article.

expected, that no clear image can be reconstructed for FNR values
below 1. As the FNR increases, the image quality improves until
the value is about 5. At higher FNR values, the image quality is
nearly independent from the FNR for any CS value.

For the parameters in our experiment, the FNR values are 3.4
and 4.8 for the cobalt and iron objects, respectively, and the average
is 4.1. Accordingly, the PSNR is about 23 for the CR of 2, as shown
in Fig. 4. The simulations also explain why we could reconstruct
the iron and cobalt, but not the brass object. The brass contains
copper and zinc with emission lines very close to the characteristic
emission lines of our source, as can be clearly seen in Fig. 2(f ),
which suggests that the data are noisy for brass. However, it is still
possible to resolve the zinc Kα line, which might indicate the pos-
sibility to reconstruct the brass with standard XRF methods. The
FNR, however, is only 1.8, which prevents the reconstruction by
GF. This can be overcome in the future by choosing well-separated
emission lines or by increasing the depth of the mask features.

From Fig. 6 and the discussion above, it is clear that the recon-
struction quality depends on the FNR and the CR. We still,
however, need to discuss the impact of the FNR on the reduction of
the measurement time and to compare it to the raster scan XRF. In
this work, we demonstrated a reduction of the measurement time
as the result of reducing the number of scanning points, which is
enabled by CS. To understand the reduction in the measurement
time compared to standard XRF measurements, we recall that for
standard XRF the measurement time is limited by the requirement
for sufficient SNR; thus, it depends on the flux of the radiation that
irradiates the sample. Since the FNR cannot exceed the SNR, the
measurement time of GF will not be shorter than the measurement
time of standard methods unless a priori knowledge on the object
is used. However, in most cases, there is a priori information such
as the sparsity of the object that is used for the application of CS.
It is used to reduce the measurement time of GF, as we demon-
strated in the present work. Therefore, the measurement time
with GF would be shorter than standard methods if the gain using
a priori knowledge is larger than the deterioration of the image
quality caused by the difference between the SNR and the FNR
[42,45,46]. It is clear that when the measurement duration per
measurement point (a single sample position for raster scan and
a single realization for GF) is not limited by the shot noise (for

example, when the motor speed is the limitation), our approach is
advantageous, since both the SNR and the FNR can be very high.
Hence, the application of CS reduces the number of measurement
points and therefore the measurement time.

Finally, we note that since the aspect ratio of the mask features
is limited by fabrication or by physical constraints and since the
lateral size of the mask features controls the spatial resolution, there
is a tradeoff between the resolution and the FNR. This constraint
has an important impact on the image quality and on the ability to
reduce the measurement time.

5. CONCLUSION

Our work opens the possibility to develop a fast high-resolution
chemical element mapping technique without focusing and with-
out moving the sample. In addition to a reduced cost and improved
mechanical stability, our method has several advantages over stand-
ard methods, which includes a smaller number of sampling points
and the applicability for a broad range of photon energies. Further
generalization of our results will lead to new applications to extend
the capabilities and the impact of XRF to new areas. Medical
imaging, for example, can benefit from our method because it
is performed at photon energies where lenses are not practical
and where the low contrast between various tissues is the main
challenge. Today, to improve the visibility and quality of images
of soft tissues, contrast agents are used since their transmission
contrast is higher than the transmission contrast between different
types of soft tissues. However, even with the contrast agents, the
visibility is limited. A potential further development of our method
is for the measurement the fluorescence from the same contrast
agents as a complementary or a completely new modality that
could increase the quality of the images or alternatively reduce the
dose of the measurements since the fluorescence contrast is sig-
nificantly higher than the transmission contrast. Another example
is for full body scanners used for national security applications.
Since our method can provide element-specific images and can
be tuned to be blind to human tissues, it can be used to improve
the privacy protection of inspected passengers in contrast to other
x-ray modalities. Finally, we point out that it is possible to replace
the input x-ray beam with an electron beam to excite the inner
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shell electrons [47]. In this case, spatial resolutions that exceeds
the nanometer scale are feasible and, with our method, it will be
possible to significantly reduce the scanning duration.
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