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Abstract

In this work, I have developed a theoretical description for the nonlin-

ear optical response of crystals. The nonlinear optical response described in

this work involves the mixing of two radiation fields. As a specific example

I have focused on the process of Spontaneous Parametric Down-Conversion

(SPDC) of x-ray into optical radiation. I have examined the nonlinear optical

response dependence on the band structure, fields polarizations and inter-

molecular interactions. In addition, I have examined a specific case of two

bands, illustrated the spectral dependence and also considered an estimation

on the contribution from inter-molecular interactions. The nonlinear response

depends on the interaction between the radiation fields and intrinsic proper-

ties of the medium such as the band structure and other related properties.

These types of interactions can be used to reveal microscopic information on

fundamental properties of crystalline bulk materials.

The theoretical approach uses perturbation theory in the density matrix for-

malism. Since this approach relies on statistical parameters, it provides access

to investigate statistical properties, such as temperature dependence, Fermi

energy, population probabilities and density of states.

Previous descriptions of the nonlinearity in this spectral region, considered

the periodicity of the crystal, but not the band structure. The previous works

showed that it is possible to relate the nonlinearity to microscopic informa-

tion on the valence electrons at the atomic scale resolution. In contrast, my

work suggests that the nonlinear interactions also contain information that is

related to the periodic potential of the crystal, such as the band structure,

and describes the conditions for which the two contributions are separable.

My theory also predicts a new polarization dependence, which can be used

to probe different terms of the interaction, and thus can provide additional

information. The key results of this thesis work were recently published [1].

Recent experimental results were found to be in agreement with some of the
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theoretical predictions of my work. In particular, recent experiments showed

an enhancement at the band gap energy [2, 3]. Another experiment, by S.

Sofer et al., showed a new polarization dependence. The strong dependence

on the joint-density of states as well as the new polarization dependence, are

both in agreement with these experimental results respectively.

Since the theory suggests that the interaction arises from both band struc-

ture properties and atomic-scale interactions, it can pave the way to utilize

nonlinear effects of x rays and long wavelengths to reveal a very broad band

spectroscopic information and structural information of valence electrons.
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1 Introduction

The possibility to utilize nonlinear interactions between x rays and radiation at

wavelengths ranging from infrared (IR) to ultraviolet (UV) as an atomic-scale probe

for inter-molecular interactions and for properties of valence electrons has been dis-

cussed in several publications [2–10]. The prospect of utilizing nonlinear effects to

develop such a probe, relies on on the atomic scale wavelengths of the x-rays, which

provide the high resolution, while the longer wavelengths (UV/optical) are used to

enhance the interactions with the valence electrons, which are usually weak for x

rays.

Recent experimental evidence of spontaneous parametric down conversion (SPDC)

of x rays into UV [2,3,6,10–12] suggests that nonlinear interactions between x rays

and longer wavelengths can be used also as new spectroscopy tools for the investiga-

tion of phenomena that traditionally are probed by using long wavelength radiation

with the advantage of providing microscopic atomic-scale information. Furthermore,

in contrast to electron or ion scattering techniques, x-rays penetrate into materials

more than electrons and therefore can provide bulk properties.

Nonlinear mixing effects between x ray and optical/UV are weak, and therefore

the measurement of such effects produces a challenge. To overcome the challenge of

measuring such effects, experiments are performed with crystals where the periodic

structure is used to enhance the signal in analogy to Bragg scattering, in which the

reciprocal lattice vector is used to achieve momentum conservation (phase match-

ing). The use of the reciprocal lattice vector also provides the atomic scale resolution,

which can be achieved by measuring the efficiencies of the effect for many reciprocal

lattice vectors and by using Fourier analysis [6]. Since the goal of the measurements

is to probe microscopic information, the use of crystals introduces a new challenge
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for the interpretation of the results since the measured signal depends not just on the

atomic or inter unit cell interactions between the valence electrons but also on the

properties related to the periodic potential of the materials, such as the band struc-

ture. It is therefore essential to develop a formalism that enables the separation of

the two contributions. The theoretical formalism presented in this work, shows how

the nonlinear response depends on both inter-molecular interactions and the band

structure, and present the conditions in which these two contributions are separable.

To date, most theoretical models that have been considered for the description

of nonlinear interactions between x rays and longer wavelengths have focused on

the ability to observe microscopic information and on the estimation of the strength

of the effects [5–9, 13–16]. However, they have not addressed the challenge of the

separation of the inter unit cell information from the periodic information. I note

that Freund and Levine and also Jha and colleagues [13–15,17–21] have considered

the periodic structure but not the influence of the electronic band structure on the

nonlinear interactions, which can be significant for valence electrons with binding

energies that are weaker or on the order of the periodic potential.

In several recent experimental papers, the experimental results were fitted to the

theory by using the band gap rather than the atomic binding energy, but although

good agreements were obtained for transparent materials, this approach is phe-

nomenological and failed for energies near or above the band gap [2]. In this work,

I illustrate how the nonlinear interaction between x-rays and longer wavelengths

depends on the band structure and related properties by using perturbation theory

in the density matrix formalism. As an example I describe explicitly the dependence

of the nonlinear interactions on the joint density of states of interband transitions.

In addition, I analyze the polarization dependencies of the nonlinear interactions

2



and predict that it is not trivial.
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2 Background

In this section I will review the theoretical background this work is based on.

First, I will introduce the concept of optical response, and the physical characteristics

of it, I will then review the theoretical framework I used to describe the optical

response in a periodic system and conclude with a brief introduction to the process of

Spontaneous Parametric Down-Conversion (SPDC), for which the nonlinear optical

response is being investigated in this work.

2.1 Nonlinear optical response

The focus of this work is on the second order nonlinearity, which can be used to

describe many nonlinear optical effects such as sum-frequency generation (SFG) and

SPDC. Schematic diagrams for these processes are presented in Fig. 1.

σ(2)ω2

ω1 ω3 = ω1+ω2

(a)

σ(2)
ωp = ωs+ωid

ωs

ωid

(b)

Figure 1: Schematic diagrams for the nonlinear processes of SFG and SPDC. (a)

SFG: two input photons at frequencies ω1 and ω2 are converted to a photon at

frequency ω3 = ω1 + ω2. (b) SPDC: an input pump photon at frequency ωp

interacts with the vacuum field, to produce a converted photon pair at frequencies

ωs and ωid.

The optical response of a system is characterized by the interactions between incident

electromagnetic (EM) fields and a medium. The incident fields induce currents in

the medium, which act as sources for radiation, which can interact with the incident

fields and so forth.
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These induced currents are introduced as a source in the wave equation for the fields.

The EM wave equation for the electric field, can be written as

(
∇2 − 1

c2
∂2

∂t2

)
E = µ0

∂j

∂t
, (2.1.1)

where E is the electric field, and j is the current density. The current density de-

scribes the optical response of a system, but it can also be described by its associated

conductivity via the tensor form of Ohm’s law.

Under the assumption that the electric field is a sum of monochromatic waves, the

resultant current density is also a sum of monochromatic waves, namely

E(x, t) =
∑

n

[
ε(ωn)e

−iωnt + c.c.
]
, j(x, t) =

∑

n

[
j(x;ωn)e

−iωnt + c.c.
]
, (2.1.2)

where ε(ωn) and j(x;ωn) are the electric field and current density amplitudes of

mode ωn, and c.c. stands for the complex conjugate of the neighboring term.

In this case, Ohm’s law relates between the Fourier coefficients of the current density

and the electric field, for the linear case according to

j(1)(x;ωn) · êi =
∑

j

σ
(1)
ij (x;ωn)(ε(ωn) · êj), (2.1.3)

where j(1)(x;ωn) and σ
(1)
ij (x;ωn) are the linear current density field amplitude and

the linear conductivity at mode ωn respectively, êi is a unit vector in the i-th direc-

tion, and {i, j} indicates Cartesian coordinates.

This relation can be extended for nonlinear response to various orders.

The second order nonlinear current density Fourier component is associated to the

5



second order conductivity in the following way

j(2)(x;ωl + ωl′) · êi

=

3∑

j,k=1

σ
(2)
ijk(x;ωl + ωl′ , ωl, ωl′) (ε(ωl) · êj) (ε(ωl′) · êk)

+

3∑

j,k=1

σ
(2)
ijk(x;ωl′ + ωl, ωl′, ωl) (ε(ωl′) · êj) (ε(ωl) · êk)

=

3∑

j,k=1

[
σ
(2)
ijk(x;ωl + ωl′ , ωl, ωl′) + σ

(2)
ikj(x;ωl′ + ωl, ωl′, ωl)

]
(ε(ωl) · êj) (ε(ωl′) · êk)

=

3∑

j,k=1

σ
(2)
ijk(x;ωl + ωl′) (ε(ωl) · êj) (ε(ωl′) · êk) .

(2.1.4)

Note that this form of the conductivity

σ
(2)
ijk(x;ωl + ωl′) = σ

(2)
ijk(x;ωl + ωl′, ωl, ωl′) + σ

(2)
ikj(x;ωl′ + ωl, ωl′, ωl), (2.1.5)

assures that it conserves intrinsic permutation symmetry, namely

σ
(2)
ijk(x;ωl + ωl′) = σ

(2)
ikj(x;ωl′ + ωl). (2.1.6)

To conclude, it is sufficient to characterize the optical response of the material by its

associated conductivity, since one can easily reconstruct from it the wave equation

for the optical process of interest.

2.2 Hamiltonian

Since the goal is to find the optical response of a periodic structure, I first need to

characterize the medium.

The Hamiltonian used to describe the medium is the one electron Bloch Hamiltonian

H0 and it describes an electron bounded by a periodic potential.

H0 =
p2

2m
+ V (x), (2.2.1)
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where the electron mass is m and the momentum operator is p.

The potential V (x) = V (x+R) is periodic with respect to translation by a lattice

vector, where R is any lattice vector.

The solutions of the Hamiltonian H0 are given by the Bloch states

H0 |nq〉 = εn(q) |nq〉 , (2.2.2)

with eigenvalues εn(q), where n is the band number and q is the wave vector asso-

ciated with the Bloch state.

To describe the interaction between the electron and the electromagnetic field, I

used the minimal coupling interaction term, so that the full Hamiltonian is of the

form

H = H0 +Hint =
(p+ eA)2

2m
+ V (x), (2.2.3)

and the interaction Hamiltonian is

Hint =
e

2m
(p ·A+A · p) + e2

2m
A2, (2.2.4)

where A is the electromagnetic vector potential, and −e is the electron charge.

In this work the vector potential was assumed to be in the coulomb gauge (∇·A =

0), and the scalar potential is zero. This choice was taken since the vector potential

is sufficient to describe the external field. Under this gauge choice, the relation

between the vector potential and the electric field is

E = −∂A
∂t
. (2.2.5)

Under the assumption that the field is comprised of a sum of monochromatic waves

(Eq. 2.1.2), the vector potential can be expressed in terms of the electric field

amplitudes in the following way

A(x, t) =
∑

l

[
ε(ωl)

iωl

e−iωlt + c.c.

]
. (2.2.6)
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Expressing the vector potential in this manner is convenient for the purpose of

evaluating the conductivity, according to Ohm’s law (Eqs. 2.1.3, 2.1.4).

2.3 Density matrix formalism

To evaluate the current density from which the conductivity will be derived, I used

the density matrix formalism. This formalism is used to describe the interaction

between the medium and the EM fields.

The density matrix is used to describe an ensemble of identical quantum systems.

This formalism takes into account the statistical uncertainties of a real system and

therefore is very useful for practical purposes. The density matrix ρ, is governed by

the equation [22]

i~
∂ρnm
∂t

= [H0 +Hint, ρ]nm − i~γnm
(
ρnm − ρ(0)nm

)
, (2.3.1)

where ρnm = 〈n| ρ |m〉, the commutator [H0 +Hint, ρ]nm = 〈n| [H0 +Hint, ρ] |m〉

and the states denoted by the quantum numbers n and m, are the eigenstates

of the unperturbed Hamiltonian H0. The phenomenological damping coefficients

are denoted by γnm and ρ(0) = f0(H0) is the relaxed density matrix which is the

normalized Fermi-Dirac distribution, such that tr
(
ρ(0)

)
= 1.

The diagonal elements ρnn give the probability of occupying a quantum state |n〉 and

therefore are referred to as populations. The off-diagonal elements ρnm describes the

evolution of coherent superpositions and are referred to as coherences. Under the

assumption that Hint is a small perturbation, one can use perturbation theory.
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2.3.1 Perturbation theory

To develop a perturbative scheme one can expand the density matrix in the following

form

ρnm =
∑

k

λkρ(k)nm = ρ(0)nm + λρ(1)nm + λ2ρ(2)nm + · · · (2.3.2)

by replacing the perturbation Hamiltonian Hint → λHint, where ρ
(k)
nm is the perturba-

tion theory solution of the density matrix of order k. This leads to a set of iterative

equations [22].

∂ρ
(k)
nm

∂t
= −(iωnm + γnm)ρ

(k)
nm − i

~

[
Hint, ρ

(k−1)
nm

]
nm
, (2.3.3)

where ωnm = 〈n|H0|n〉−〈m|H0|m〉
~

= ǫn−ǫm
~

. (this scheme is developed in the eigenbasis

of H0, and {n,m} represent the quantum numbers of the system.)

Solving these differential equations up to the desired order concludes the scheme.

For the solution presented by Eq. (2.3.2) to represent physical reality, I set λ = 1

at the end of the procedure.

The full density matrix ρ(t), can then be expressed as a power series in the field A

ρ(t) = ρ(0) + ρ(A) + ρ(AA) + · · · , (2.3.4)

where the first term on the right hand side is the relaxed density matrix in the

absence of the field, the second term is linear with the field amplitude, the third

term is square in the field amplitude and so on.

After obtaining the solution for the density matrix it is possible to calculate ob-

servables and in particular to calculate the expectation value of the current density

〈j〉.
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2.3.2 Current density

In the density matrix formalism, calculation of an observable average 〈O〉 is given

by

〈O〉 = tr(ρO), (2.3.5)

where O is any physical operator of interest.

In the presence of an EM field, the current density operator [23] is

jop(x, t) =
−e
2m

[|x〉 〈x| (p+ eA) + (p+ eA) |x〉 〈x|] , (2.3.6)

and thus the current density expectation value is given by

〈j〉 (x, t) = tr
(
ρ(t)jop(x, t)

)
. (2.3.7)

Once attaing the current density, the evalution of the conductivity is done using

Ohm’s law (Eqs. 2.1.3, 2.1.4).

2.4 X-ray spontaneous parametric down-conversion

This subsection includes a brief introduction to the process of X-ray spontaneous

parametric down-conversion.

2.4.1 Literature review

Spontaneous parametric down-conversion (SPDC) is a second order nonlinear pro-

cess, where an incident photon called pump (with frequency ωp) converts into two

photons conventionally called signal and idler (with frequencies ωs and ωid respec-

tively), such that ωp = ωs + ωid. The conversion occurs in the nonlinear medium

and it is a quantum process since it is stimulated by vacuum fluctuations [19].

The effect of SPDC was first observed experimentally and described theoretically in

the 1960’s in the visible region [24–31]. Freund’s work on nonlinear diffraction [17]
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offered to use a reciprocal lattice vector to meet phase-matching conditions which

led to the development of SPDC in the x-ray region [13,19]. The first experimental

observation of SPDC in the x-ray region was done in 1971 by Eisenberger and Mc-

Call [32], where they used Mo target x-ray tube as a source for the pump photons at

17 keV, hitting a beryllium crystal, producing degenerate photon pairs with energy

of 8.5 keV. In 1972 Freund suggested the possibility of experimental determination

of the valence electron charge density using SPDC of x-rays into a lower energy x-

ray and UV [15]. The proposed method was to select the UV energy to be between

the UV band gap and the lowest absorption edge of the inner shell electrons, where

the nonlinearity is dominated by the charge distribution of the valence electrons.

Following that work, in 1981 Freund and Danino observed SPDC of an x-ray pump

(produced from Cu-Kα ∼8.04keV) into x-ray (signal - 7.7keV) and extreme ultra-

violet (idler - 335eV) [4]. In that paper they reiterated that a direct determination

of valence electron charge distributions is possible. In 2007 Tamasaku et al. inves-

tigated theoretically and experimentally the effect of SPDC of x-ray into extreme

ultraviolet taking into account Compton scattering and suggested the possibility

of interference between the two processes [11, 33]. Later they demonstrated that

x-ray SPDC is observable indirectly via the Fano effect and were able to determine

the second order susceptibility [5]. Following that work, Tamasaku et al. demon-

strated the x-ray SPDC into UV effect with high resolution and calculated the first

and second order susceptibilities [6]. In a recent work by our group, Borodin et

al. first reported the high energy-resolution measurement of SPDC of x-ray into

UV in diamond and in lithium fluoride crystals, using an x-ray tube source [12].

Subsequently, Schori et al. first reported the experimental observation of SPDC of

x rays to optical wave-lengths [2]. Later on, Borodin et al. reported the observation

of collective effects in x-ray into UV in diamond crystal [10]. The authors proposed

an interpretation which includes nonlinear interactions with plasmons. In a recently
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accepted publication by our group, Sofer et al. reported the observation of SPDC

of x rays into UV in gallium arsenide and lithium niobate crystals [3]. The authors

used crystals with no center of symmetry, and measured the effect with efficiencies

that are about 4 orders of magnitude stronger than in any material studied before.

2.4.2 Kinematics

For the SPDC process to be efficient, phase-matching condition is required. This

condition reflects conservation of momentum, and when it is met, the efficiency of

the process is maximal. In the x-ray region, reciprocal lattice vectors are used to

achieve phase-matching. This is possible since the reciprocal lattice vectors and

the pump wave vector are on the same order of magnitude. The phase-matching

condition for x-ray SPDC is shown by the diagram presented in Fig. 2, and can be

G

kp

ks

kid

Figure 2: Phase-matching diagram. ks, kid and kp are the wave vectors of the

signal, idler and pump fields, respectively. G is the reciprocal lattice vector.

written as

kp +G = ks + kid. (2.4.1)

12



This condition along with the conservation of energy ωp = ωs + ωid, is taken into

account in the wave equations for the process, thus is also enforced in the associated

conductivity for the process.

13



3 Nonlinear optical response for crystals

In this section I follow the scheme presented in the background, and present my

calculation for the general second order optical response of of periodic structures in

the x-ray regime. It is important to note, that the scheme I used, to evaluate the

current density, is very similar to the one presented by Jha and Warke [18].

I will begin with the evaluation of the density matrix up to second order and discuss

the different terms and their origin. The next step will be the evaluation of the cur-

rent density from the obtained density matrix. In this part I first find the temporal

Fourier coefficients of the current density and then derive the conductivity. In the

final step, I focus on the spatial Fourier coefficient of the conductivity. Since the

Hamiltonian of the unperturbed system is of a periodic structure, the conductivity

is also periodic and thus Fourier synthesis is possible.

3.1 Density matrix

In this section to evaluate the density matrix, I follow perturbation theory [18, 22].

For convenience of notation, the quantum numbers will be written by single number,

such that the states, the Bloch wave functions and the energies will be written in

the following way

|nq〉 ⇒ |n〉 ,

〈x|nq〉 = ψnq(x) ⇒ 〈x|n〉 = ψn(x),

〈nq| H0 |nq〉 = εn(q) ⇒ 〈n|H0 |n〉 = ǫn.

(3.1.1)

In later sections, where it will be important, the quantum numbers, states and ener-

gies will be written explicitly. In the scheme presented in the theoretical background,

each perturbation theory order of the density matrix corresponds to the previous

order by Eq. (2.3.3). I am interested in the effect of the perturbation in the long

time limit, and so I assume that the perturbation was turned on at t = −∞, and
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get the following solution

ρ(k)nm(t) = ρ(0)nmδk,0 − (1− δk,0)i~
−1e−(iωnm+γnm)t

t
ˆ

−∞

dτ e(iωnm+γnm)τ
[
Hint, ρ

(k−1)
]
nm

(τ).

(3.1.2)

Since the relaxed density matrix is of the form ρ(0) = f0(H0), it contains only

diagonal elements. This also means that the perturbation will only add off-diagonal

terms.

It is important to note that the perturbation consists of two terms, with one being

linear with the field, and the other term being nonlinear with the field, such that it

can be written as

Hint = HA +HAA. (3.1.3)

I denote the linear term as HA and the other term, which is of second order in the

field as HAA, and they are given by

HA =
e

2m
(p ·A+A · p) = e

m
A · p,

HAA =
e2

2m
A2,

(3.1.4)

where [p,A] = −i~∇·A = 0 was used in the first equation and the vector potential

is a sum of plane waves, such that amplitude in Eq. (2.2.6) is ε(ωl) = εle
ikl·x.

This fact, along with the iterative solution given by Eq. (3.1.2), leads to that each

order of the density matrix ρ(k), may contain several terms, with each term having

different field dependence.

To put it simply, the density matrix of order k can be written as

ρ(k) = δk,0ρ
(0) +

∑

j=1

ρ(k,A
j), (3.1.5)

where ρ(k,A
j), is the k-th order density matrix with j-th order field dependence. The

zeroth order having no field dependence, and the first two orders can be written as

ρ(1) = ρ(1,A) + ρ(1,A
2), ρ(2) = ρ(2,A

2) + ρ(2,A
3) + ρ(2,A

4). (3.1.6)
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This also means that if I use Eq. (2.3.4), I get

ρ(A) = ρ(1,A), ρ(AA) = ρ(1,A
2) + ρ(2,A

2). (3.1.7)

The solution given by Eq. (3.1.2) depends on matrix elements of the perturbation.

These matrix elements can be Fourier expanded, since the field is a sum of plane

waves.

HA
nm = 〈n| HA |m〉 =

∑

l

[
HA(n,m, l)e−iωlt + c.c.

]
,

HAA
nm = 〈n|HAA |m〉 =

∑

l,l′

[
HAA(n,m, l, l′)e−i(ωl+ωl′)t + c.c.

]
.

(3.1.8)

and the Fourier coefficients are given by

HA(n,m, l) =
e

imωl

εl · 〈n| eikl·xp |m〉 = e

imωl

e−ikl·x
3∑

h=1

ε(ωl) · êh 〈n| eikl·xp · êh |m〉 ,

HAA(n,m, l, l′) =
−e2

2mωlωl′
εl · εl′ 〈n| ei(kl+kl′)·x |m〉

=
−e2

2mωlωl′
e−i(kl+kl′ )·x

3∑

h=1

ε(ωl) · êhε(ωl′) · êh 〈n| ei(kl+kl′)·x |m〉 .

(3.1.9)

Using these definitions along with the solution given by Eq. (3.1.2) I find that

ρ(A)
nm(t) = −i~−1 (f0(ǫm)− f0(ǫn))

∑

l

HA(n,m, l)

i(ωnm − ωl) + γnm
e−iωlt

ρ(1,A
2)

nm (t) = −i~−1 (f0(ǫm)− f0(ǫn))
∑

l,l′

HAA(n,m, l, l′)

i(ωnm − ωl − ωl′) + γnm
e−i(ωl+ωl′)t

(3.1.10)

where f0(ǫn) = 〈n| f0(H0) |n〉 was used. These solutions can be rewritten in the

following way

ρ(A)
nm(t) =

∑

l

ρ(A)(n,m, l)e−iωlt,

ρ(1,A
2)

nm (t) =
∑

l,l′

ρ(1,A
2)(n,m, l, l′)e−i(ωl+ωl′)t,

(3.1.11)
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where

ρ(A)(n,m, l) =
−i~−1 (f0(ǫm)− f0(ǫn))HA(n,m, l)

i(ωnm − ωl) + γnm
,

ρ(1,A
2)(n,m, l, l′) =

−i~−1 (f0(ǫm)− f0(ǫn))HAA(n,m, l, l′)

i(ωnm − ωl − ωl′) + γnm
.

(3.1.12)

Using the iterative solution given by Eq. (3.1.2), I find

ρ(2,A
2)

nm (t) = −i~−1
∑

r,l,l′

[
HA(n, r, l)ρ(A)(r,m, l′)− ρ(A)(n, r, l′)HA(r,m, l)

]

i(ωnm − ωl − ωl′) + γnm
e−i(ωl+ωl′ )t.

(3.1.13)

Note that the sum index r runs over the quantum numbers of the unperturbed

Hamiltonian, and the indices l, l′ corresponds to the external field modes.

Following the expansion described by Eq. (2.3.4). I will summarize the result for

each term.

ρ(0)nm = δnmf0(ǫn),

ρ(A)
nm(t) = −i~−1 (f0(ǫm)− f0(ǫn))

∑

l

HA(n,m, l)

i(ωnm − ωl) + γnm
e−iωlt,

ρ(AA)
nm (t) = −i~−1

∑

l,l′

[
(f0(ǫm)− f0(ǫn))HAA(n,m, l, l′)

i(ωnm − ωl − ωl′) + γnm

+
∑

r

[
HA(n, r, l)ρ(A)(r,m, l′)− ρ(A)(n, r, l′)HA(r,m, l)

]

i(ωnm − ωl − ωl′) + γnm

]
e−i(ωl+ωl′ )t.

(3.1.14)

The contribution to ρ(A) comes only from HA and for ρ(AA) there are two contribu-

tions: one from the first order perturbation theory, which comes from HAA whereas

the second term comes from the second order perturbation theory, which comes from

HA. Both ρ(A) and ρ(AA) contribute to the second order current density, as will be

shown in the next section.

3.2 Current density

In this section, I describe my derivation of the second order current density. I start

by noting that the current density operator given by Eq. (2.3.6), can be written in
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a more convenient form by first defining the charge density operator Dop(x), to be

Dop(x) = −e |x〉 〈x| . (3.2.1)

The current density operator

jop(x, t) = jpop(x) + jAop(x, t),

=
1

2m
{Dop(x),p}+

e

m
Dop(x)A(x, t),

(3.2.2)

where the first term being the momentum current density

jpop(x) =
1

2m
{Dop(x),p} , (3.2.3)

and the second term is the so called gauge current density

jAop(x, t) =
e

m
Dop(x)A(x, t). (3.2.4)

The average current density is given by Eq. (2.3.7), can be written as

〈j〉 (x, t) =
∑

n

〈j〉(n) = 〈j〉(0) (x) + 〈j〉(1) (x, t) + 〈j〉(2) (x, t) + · · · , (3.2.5)

where n signifies the order in which the current density depends on the field.

Following Eq. (2.3.4) I find that the second order current density is comprised of

two parts

〈j〉(2) (x, t) = 〈j〉(2,p) + 〈j〉(2,A) , (3.2.6)

where 〈j〉(2,p) is the second order current density that arises from the momentum

part and 〈j〉(2,A) is the second order current density that arises from the gauge part

of the current density operator. These terms are given by

〈j〉(2,p) = tr
(
ρ(AA) jpop(x)

)

〈j〉(2,A) = tr
(
ρ(A) jAop(x, t)

) (3.2.7)

The distinction between the two parts will be useful later to relate between the

conductivity which arises from jAop, and the induced charge density tensor.
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To find 〈j〉(2) (x, t) using Eq. (2.3.7), I first need to find the current density op-

erator matrix elements, in the basis of the unperturbed Hamiltonian, namely

〈n| jop(x) |m〉 = jop(x)nm = jpop(x)nm + jAop(x, t)nm, (3.2.8)

and I get

jAop(x, t)nm = −e
2

m
ψ∗
n(x)ψm(x)A(x, t),

jpop(x)nm = − e

2m
{ψ∗

n(x) (−i~∇)ψm(x)− ψm(x) (−i~∇)ψ∗
n(x)} ,

(3.2.9)

and thus 〈j〉(2) (x, t) is given by

〈j〉(2) (x, t) = tr
(
ρ(A)(t)jAop(x, t)

)
+ tr

(
ρ(AA)(t)jpop(x)

)

=
∑

nm

[
ρ(A)
nm(t)j

A
opmn

(x, t) + ρ(AA)
nm (t)jpopmn

(x)
]
.

(3.2.10)

Using Eqs. (3.1.14, 3.2.9) I get

〈j〉(2) (x, t)

= −e
2

m

∑

n,m,l

−i~−1 (f0(ǫm)− f0(ǫn))HA(n,m, l)

i(ωnm − ωl) + γnm
e−iωltψ∗

m(x)ψn(x)A(x, t)

+
e

2m

∑

n,m,l,l′

(f0(ǫm)− f0(ǫn))HAA(n,m, l, l′)

i(ωnm − ωl − ωl′) + γnm
e−i(ωl+ωl′)t

× {ψ∗
m(x) (∇ψn(x))− ψn(x) (∇ψ∗

m(x))}

− ie

2~m

∑

n,m,r,l,l′

{ψ∗
m(x) (∇ψn(x))− ψn(x) (∇ψ∗

m(x))} e−i(ωl+ωl′)t

×

[
HA(n, r, l)HA(r,m, l′) (f0(ǫm)− f0(ǫr))

[i(ωnm − ωl − ωl′) + γnm] [i(ωrm − ωl′) + γrm]

− HA(n, r, l′)HA(r,m, l) (f0(ǫr)− f0(ǫn))

[i(ωnm − ωl − ωl′) + γnm] [i(ωnr − ωl′) + γnr]

]

(3.2.11)

where the summation indices {r, n,m} are on the states quantum numbers and {l, l′}

are on the field modes.
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To display this result explicitly in terms of the matrix elements of the perturbation

and full quantum numbers, I use Eq. (3.1.9), and make the following substitutions

n⇒ n1 q1, m⇒ n2 q2, r ⇒ n3 q3,

ωnm ⇒ ωn1 q1,n2 q2
, ωnr ⇒ ωn1 q1,n3 q3

, ωrm ⇒ ωn3 q3,n2 q2
,

γnm ⇒ γn1 q1,n2 q2
, γnr ⇒ γn1 q1,n3 q3

, γrm ⇒ γn3 q3,n2 q2
,

ǫn ⇒ εn1
(q1), ǫm ⇒ εn2

(q2), ǫr ⇒ εn3
(q3),

(3.2.12)

and get

〈j〉(2) (x, t) =
∑

n1 q1,n2 q2

∑

l,l′

3∑

h=1

e3

im2ωlωl′~

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| eikl·xp · êh |n2 q2〉
i(ωn1 q1,n2 q2

− ωl) + γn1 q1,n2 q2

ψ∗
n2 q2

(x)ψn1 q1
(x)e−ikl·x(ε(ωl) · êh)ε(ωl′)e

−i(ωl+ωl′)t

−
∑

n1 q1,n2 q2

∑

l,l′

3∑

h=1

e3

4m2ωlωl′

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| ei(kl+kl′)·x |n2 q2〉
i(ωn1 q1,n2 q2

− ωl − ωl′) + γn1 q1,n2 q2

×
{
ψ∗
n2 q2

(x) (∇ψn1 q1
(x))− ψn1 q1

(x)
(
∇ψ∗

n2 q2
(x)

)}
e−i(kl+kl′ )·x

× (ε(ωl) · êh)(ε(ωl′) · êh)e−i(ωl+ωl′)t

+
∑

n1 q1,n2 q2,n3 q3

∑

l,l′

3∑

h=1,h′=1

ie3

2m3ωlωl′~

×
{
ψ∗
n2 q2

(x) (∇ψn1 q1
(x))− ψn1 q1

(x)
(
∇ψ∗

n2 q2
(x)

)}
e−i(kl+kl′ )·x

×

[
〈n1 q1| eikl·xp · êh |n3 q3〉 〈n3 q3| eikl′ ·xp · êh′ |n2 q2〉 (f0(εn2

(q2))− f0(εn3
(q3)))

[i(ωn1 q1,n2 q2
− ωl − ωl′) + γn1 q1,n2 q2

] [i(ωn3 q3,n2 q2
− ωl′) + γn3 q3,n2 q2

]

− 〈n1 q1| eikl′ ·xp · êh′ |n3 q3〉 〈n3 q3| eikl·xp · êh |n2 q2〉 (f0(εn3
(q3))− f0(εn1

(q1)))

[i(ωn1 q1,n2 q2
− ωl − ωl′) + γn1 q1,n2 q2

] [i(ωn1 q1,n3 q3
− ωl′) + γn1 q1,n3 q3

]

]

× (ε(ωl) · êh)(ε(ωl′) · êh′)e−i(ωl+ωl′ )t

(3.2.13)
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3.2.1 Current density temporal Fourier components

To proceed with the calculation, I first need to find the Fourier components of the

current density.

The current density can be written as

〈j〉(2) (x, t) =
∑

l,l′

[
〈j〉(2) (x;ωl + ωl′, ωl, ωl′)e

−i(ωl+ωl′)t + c.c.
]
,

〈j〉(2) (x;ωl + ωl′) = 〈j〉(2) (x;ωl + ωl′, ωl, ωl′) + 〈j〉(2) (x;ωl′ + ωl, ωl′, ωl).

(3.2.14)

This form corresponds with the result of Eq. (3.2.13), having two different terms

when exchanging between l and l′.

For our purposes, it is sufficient to find 〈j〉(2) (x;ωl+ωl′, ωl, ωl′), and when evaluating

the conductivity, both terms must be taken, namely 〈j〉(2) (x;ωl + ωl′).

I project the current density onto an arbitrary direction, denoted by êi and find that
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the current density Fourier component is given by

〈j〉(2) (x;ωl + ωl′, ωl, ωl′) · êi =
∑

n1 q1,n2 q2

3∑

h=1

e3

im2ωlωl′~

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| eikl·xp · êh |n2 q2〉
i(ωn1 q1,n2 q2

− ωl) + γn1 q1,n2 q2

ψ∗
n2 q2

(x)ψn1 q1
(x)e−ikl·x(ε(ωl) · êh)(ε(ωl′) · êi)

−
∑

n1 q1,n2 q2

3∑

h=1

e3

4m2ωlωl′

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| ei(kl+kl′ )·x |n2 q2〉
i(ωn1 q1,n2 q2

− ωl − ωl′) + γn1 q1,n2 q2

×
{
ψ∗
n2 q2

(x) (∇ψn1 q1
(x))− ψn1 q1

(x)
(
∇ψ∗

n2 q2
(x)

)}
· êie−i(kl+kl′ )·x

× (ε(ωl) · êh)(ε(ωl′) · êh)

+
∑

n1 q1,n2 q2,n3 q3

3∑

h=1,h′=1

ie3

2m3ωlωl′~

×
{
ψ∗
n2 q2

(x) (∇ψn1 q1
(x))− ψn1 q1

(x)
(
∇ψ∗

n2 q2
(x)

)}
· êie−i(kl+kl′ )·x

×

[
〈n1 q1| eikl·xp · êh |n3 q3〉 〈n3 q3| eikl′ ·xp · êh′ |n2 q2〉 (f0(εn2

(q2))− f0(εn3
(q3)))

[i(ωn1 q1,n2 q2
− ωl − ωl′) + γn1 q1,n2 q2

] [i(ωn3 q3,n2 q2
− ωl′) + γn3 q3,n2 q2

]

− 〈n1 q1| eikl′ ·xp · êh′ |n3 q3〉 〈n3 q3| eikl·xp · êh |n2 q2〉 (f0(εn3
(q3))− f0(εn1

(q1)))

[i(ωn1 q1,n2 q2
− ωl − ωl′) + γn1 q1,n2 q2

] [i(ωn1 q1,n3 q3
− ωl′) + γn1 q1,n3 q3

]

]

× (ε(ωl) · êh)(ε(ωl′) · êh′)

(3.2.15)

3.3 Second order conductivity

In this section I describe my derivation of the second order conductivity from the

current density. I relate 〈j〉(2) (x;ωl + ωl′, ωl, ωl′) · êi to the conductivity, by using

the relation

〈j〉(2) (x;ωl + ωl′, ωl, ωl′) · êi =
3∑

j,k=1

σ
(2)
ijk(x;ωl + ωl′, ωl, ωl′) (ε(ωl) · êj) (ε(ωl′) · êk) .

(3.3.1)

I note that the full conductivity σ
(2)
ijk(x;ωl + ωl′), is attainable using Eqs. (2.1.4)-

(2.1.6), for which intrinsic permutation symmetry holds. Using Eqs. (3.3.1, 3.2.15),
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I find

σ
(2)
ijk(x;ωl + ωl′, ωl, ωl′) =

∑

n1 q1,n2 q2

e3

im2ωlωl′~

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| eikl·xp · êj |n2 q2〉
i(ωn1 q1,n2 q2

− ωl) + γn1 q1,n2 q2

ψ∗
n2 q2

(x)ψn1 q1
(x)e−ikl·xδi,k

−
∑

n1 q1,n2 q2

e3

4m2ωlωl′

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| ei(kl+kl′ )·x |n2 q2〉
i(ωn1 q1,n2 q2

− ωl − ωl′) + γn1 q1,n2 q2

×
{
ψ∗
n2 q2

(x) (∇ψn1 q1
(x))− ψn1 q1

(x)
(
∇ψ∗

n2 q2
(x)

)}
· êie−i(kl+kl′)·xδj,k

+
∑

n1 q1,n2 q2,n3 q3

ie3

2m3ωlωl′~

×
{
ψ∗
n2 q2

(x) (∇ψn1 q1
(x))− ψn1 q1

(x)
(
∇ψ∗

n2 q2
(x)

)}
· êie−i(kl+kl′)·x

×

[
〈n1 q1| eikl·xp · êj |n3 q3〉 〈n3 q3| eikl′ ·xp · êk |n2 q2〉 (f0(εn2

(q2))− f0(εn3
(q3)))

[i(ωn1 q1,n2 q2
− ωl − ωl′) + γn1 q1,n2 q2

] [i(ωn3 q3,n2 q2
− ωl′) + γn3 q3,n2 q2

]

− 〈n1 q1| eikl′ ·xp · êk |n3 q3〉 〈n3 q3| eikl·xp · êj |n2 q2〉 (f0(εn3
(q3))− f0(εn1

(q1)))

[i(ωn1 q1,n2 q2
− ωl − ωl′) + γn1 q1,n2 q2

] [i(ωn1 q1,n3 q3
− ωl′) + γn1 q1,n3 q3

]

]

(3.3.2)

3.3.1 Second order conductivity spatial Fourier components

Since the unperturbed Hamiltonian is symmetric under translation by a lattice vec-

tor, the conductivity also preserves this symmetry. Therefore, it can be written in

the following form

σ
(2)
ijk(x;ωl + ωl′, ωl, ωl′) =

∑

G

σ
(2)
ijk(ωl + ωl′, ωl, ωl′;G)eiG·x, (3.3.3)

where G is the reciprocal lattice vector and V is the crystal volume. This also means

σ
(2)
ijk(ωl + ωl′, ωl, ωl′;G) =

1

V

ˆ

V

dxσ
(2)
ijk(x;ωl + ωl′, ωl, ωl′)e

−iG·x. (3.3.4)
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Note that for G = 0, one obtains the average macroscopic conductivity.

To find σ
(2)
ijk(ωl + ωl′, ωl, ωl′;G), I use Eq. (3.3.4) and get

σ
(2)
ijk(ωl + ωl′, ωl, ωl′;G) =

∑

n1 q1,n2 q2

e3

im2ωlωl′~V

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| eikl·xp · êj |n2 q2〉
i(ωn1 q1,n2 q2

− ωl) + γn1 q1,n2 q2

× 〈n2 q2| e−i(kl+G)·x |n1 q1〉 δi,k

−
∑

n1 q1,n2 q2

ie3

4m2ωlωl′~V

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| ei(kl+kl′)·x |n2 q2〉
i(ωn1 q1,n2 q2

− ωl − ωl′) + γn1 q1,n2 q2

×
[
2 〈n2 q2| e−i(kl+G+kl′)·xp · êi |n1 q1〉

− ~(kl +G+ kl′) · êi 〈n2 q2| e−i(kl+G+kl′)·x |n1 q1〉
]
δj,k

−
∑

n1 q1,n2 q2,n3 q3

e3

2m3ωlωl′~
2V

[
2 〈n2 q2| e−i(kl+G+kl′)·xp · êi |n1 q1〉

− ~(kl +G+ kl′) · êi 〈n2 q2| e−i(kl+G+kl′)·x |n1 q1〉
]

×

[
〈n1 q1| eikl·xp · êj |n3 q3〉 〈n3 q3| eikl′ ·xp · êk |n2 q2〉 (f0(εn2

(q2))− f0(εn3
(q3)))

[i(ωn1 q1,n2 q2
− ωl − ωl′) + γn1 q1,n2 q2

] [i(ωn3 q3,n2 q2
− ωl′) + γn3 q3,n2 q2

]

− 〈n1 q1| eikl′ ·xp · êk |n3 q3〉 〈n3 q3| eikl·xp · êj |n2 q2〉 (f0(εn3
(q3))− f0(εn1

(q1)))

[i(ωn1 q1,n2 q2
− ωl − ωl′) + γn1 q1,n2 q2

] [i(ωn1 q1,n3 q3
− ωl′) + γn1 q1,n3 q3

]

]
.

(3.3.5)

To evaluate the integrals I used the following
ˆ

V

dx
[
ψ∗
n2 q2

(x) (∇ψn1 q1
(x))− ψn1 q1

(x)
(
∇ψ∗

n2 q2
(x)

)]
eik·x

=
i

~

[
2 〈n2 q2| eik·x

′

p |n1 q1〉+ ~k 〈n2 q2| eik·x
′′ |n1 q1〉

]
.

(3.3.6)

For full derivation of this relation see appendix (A.2).

The general conductivity contains 3 terms. The first comes from the gauge part of

the current density operator and the last two terms comes from the momentum part

of the current density operator. The second term came from first order perturbation

theory, from the HAA part of the perturbation, and the last term came from the
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second order perturbation theory which contained a product of terms from HA.

3.3.2 The induced charge density and the conductivity

In this section I will reintroduce the charge density operator in more detail, show

how it is related to the conductivity, which arises from the gauge part of current

density, and relate it to the induced charge density tensor.

I begin with the average charge density

ρc(x, t) = tr(ρ(t)Dop(x)) =
∑

n

ρ(n)c = ρ(0)c (x) + ρ(1)c (x, t) + · · · , (3.3.7)

where ρc(x, t) is the average charge density, Dop is the charge density operator (Eq.

(3.2.1)) and n signifies the order of each term with respect to the field. The average

charge density in the absence of an external field is ρ
(0)
c (x), and ρ

(1)
c (x, t) is the

average induced charge. The induced charge density can be Fourier expanded in the

field modes, namely

ρ(1)c (x, t) =
∑

l

[
ρ(1)c (x;ωl)e

−iωlt + c.c.
]
. (3.3.8)

The Fourier coefficients of the induced charge density are related to the electric field

amplitudes via the induced charge density tensor

ρ(1)c (x;ωl) =

3∑

j=1

Dj(x;ωl) (ε(ωl) · êj) , (3.3.9)

where Dj(x;ωl) is the induced charge density tensor in j-th direction. The induced

charge density tensor has the periodicity of the lattice and therefore can be written

as

Dj(x;ωl) =
∑

G

Dj(ωl;G)eiG·x,

Dj(ωl;G) =
1

V

ˆ

V

dxDj(x;ωl)e
−iG·x.

(3.3.10)
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The current density, which arises from jAop denoted by
〈
jA

〉
(x, t), is related to the

charge density in the following way

〈
jA

〉
(x, t) = tr

(
ρ(t)jA

op(x, t)
)
=

e

m
ρc(x, t)A(x, t). (3.3.11)

The second order current density 〈j〉(2,A) (x, t) is thus related to the induced charge

density

〈j〉(2,A) (x, t) = tr
(
ρ(A) jAop(x, t)

)
=

e

m
ρ(1)c (x, t)A(x, t). (3.3.12)

Using Eqs. (2.2.6, 3.3.1, 3.3.9) I get

σ
(2,A)
ijk (x;ωl + ωl′, ωl, ωl′) =

e

imωl′
Dj(x;ωl)δi,k, (3.3.13)

where σ
(2,A)
ijk is the conductivity which arises from jAop(x, t). Using Eqs. (3.3.4,

3.3.13), I get

σ
(2,A)
ijk (ωl + ωl′, ωl, ωl′;G) =

e

imωl′
Dj(ωl;G)δi,k. (3.3.14)

Following this result, I identify the induced charge density tensor Fourier component

to be

Dj(ωl;G) =
e2

mωl~V

∑

n1 q1,n2 q2

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| eikl·xp · êj |n2 q2〉
i(ωn1 q1,n2 q2

− ωl) + γn1 q1,n2 q2

× 〈n2 q2| e−i(kl+G)·x |n1 q1〉 .
(3.3.15)
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The second order general conductivity can be written as

σ
(2)
ijk(ωl + ωl′, ωl, ωl′;G) =

e

imωl′
Dj(ωl;G)δik

−
∑

n1 q1,n2 q2

ie3

4m2ωlωl′~V

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| ei(kl+kl′)·x |n2 q2〉
i(ωn1 q1,n2 q2

− ωl − ωl′) + γn1 q1,n2 q2

×
[
2 〈n2 q2| e−i(kl+G+kl′)·xp · êi |n1 q1〉

− ~(kl +G+ kl′) · êi 〈n2 q2| e−i(kl+G+kl′)·x |n1 q1〉
]
δj,k

−
∑

n1 q1,n2 q2,n3 q3

e3

2m3ωlωl′~
2V

[
2 〈n2 q2| e−i(kl+G+kl′)·xp · êi |n1 q1〉

− ~(kl +G+ kl′) · êi 〈n2 q2| e−i(kl+G+kl′)·x |n1 q1〉
]

×

[
〈n1 q1| eikl·xp · êj |n3 q3〉 〈n3 q3| eikl′ ·xp · êk |n2 q2〉 (f0(εn2

(q2))− f0(εn3
(q3)))

[i(ωn1 q1,n2 q2
− ωl − ωl′) + γn1 q1,n2 q2

] [i(ωn3 q3,n2 q2
− ωl′) + γn3 q3,n2 q2

]

− 〈n1 q1| eikl′ ·xp · êk |n3 q3〉 〈n3 q3| eikl·xp · êj |n2 q2〉 (f0(εn3
(q3))− f0(εn1

(q1)))

[i(ωn1 q1,n2 q2
− ωl − ωl′) + γn1 q1,n2 q2

] [i(ωn1 q1,n3 q3
− ωl′) + γn1 q1,n3 q3

]

]
.

(3.3.16)
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4 Nonlinear interaction for spontaneous paramet-

ric down-conversion

In this section, I describe the evaluation of the conductivity relevant for the process

of SPDC of x rays into UV/visible radiation. I denote the input x-ray beam, the

output x-ray beam, and the optical beam as the pump (ωp,kp), signal (ωs,ks) and

idler (ωid,kid) respectively. Due to the high absorption in the UV range, in a typical

experiment only the signal photons are measured, and thus I focus my interest in

the conductivity for the signal mode.

I can simplify the expressions by first assuming that the x-ray wavelengths are far

above any electronic transitions and use the dipole approximation for the optical

beam (but not for the x rays).

Secondly, by expressing the matrix elements using very localized of Wannier func-

tions, I further simplify my expressions.

In addition, since the wavelengths of the x rays are also on the order of the distance

between the atomic planes, the reciprocal lattice vector is used to comply with the

requirement for momentum conservation (phase matching), given by the equation

kp + G = ks + kid. Thus the measured intensity is proportional to the Fourier

coefficient that corresponds to the selected reciprocal lattice vector.

I begin the derivation with the general expression for the conductivity for the signal

mode, using the following relation

σ
(2)
ijk(ωs;G) = σ

(2)
ijk(ωp − ωid, ωp,−ωid;G) + σ

(2)
ikj(−ωid + ωp,−ωid, ωp;G), (4.0.17)

such that

〈j〉(2) (x;ωp − ωid = ωs) · êi =
∑

jk

σ
(2)
ijk(ωs;G)eiG·x(ε(ωp) · êj)(ε∗(ωid) · êk), (4.0.18)
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where (êi, êj, êk) are unit vectors projected in the direction of the signal, pump and

idler fields respectively.
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4.1 The conductivity for the signal mode in the Bloch basis

Following the general result for the conductivity (Eqs.(3.3.5, 4.0.17)), I find that the

conductivity for the signal mode is

σ
(2)
ijk(ωs;G) =

∑

n1 q1,n2 q2

−e3
im2ωpωid~V

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| eikp·xp · êj |n2 q2〉
i(ωn1 q1,n2 q2

− ωp) + γn1 q1,n2 q2

× 〈n2 q2| e−i(kp+G)·x |n1 q1〉 δi,k

+
∑

n1 q1,n2 q2

ie3

4m2ωpωid~V

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| ei(kp−kid)·x |n2 q2〉
i(ωn1 q1,n2 q2

− ωp + ωid) + γn1 q1,n2 q2

×
[
2 〈n2 q2| e−i(kp+G−kid)·xp · êi |n1 q1〉

− ~(kp +G− kid) · êi 〈n2 q2| e−i(kp+G−kid)·x |n1 q1〉
]
δj,k

+
∑

n1 q1,n2 q2,n3 q3

e3

2m3ωpωid~
2V

[
2 〈n2 q2| e−i(kp+G−kid)·xp · êi |n1 q1〉

− ~(kp +G− kid) · êi 〈n2 q2| e−i(kp+G−kid)·x
′′ |n1 q1〉

]

×

[
〈n1 q1| eikp·xp · êj |n3 q3〉 〈n3 q3| e−ikid·xp · êk |n2 q2〉 (f0(εn2

(q2))− f0(εn3
(q3)))

[i(ωn1 q1,n2 q2
− ωp + ωid) + γn1 q1,n2 q2

] [i(ωn3 q3,n2 q2
+ ωid) + γn3 q3,n2 q2

]

− 〈n1 q1| e−ikid·xp · êk |n3 q3〉 〈n3 q3| eikp·xp · êj |n2 q2〉 (f0(εn3
(q3))− f0(εn1

(q1)))

[i(ωn1 q1,n2 q2
− ωp + ωid) + γn1 q1,n2 q2

] [i(ωn1 q1,n3 q3
+ ωid) + γn1 q1,n3 q3

]

]

∑

n1 q1,n2 q2

−e3
im2ωpωid~V

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| e−ikid·xp · êk |n2 q2〉
i(ωn1 q1,n2 q2

+ ωid) + γn1 q1,n2 q2

× 〈n2 q2| ei(kid−G)·x |n1 q1〉 δi,j

+
∑

n1 q1,n2 q2

ie3

4m2ωpωid~V

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| ei(kp−kid)·x |n2 q2〉
i(ωn1 q1,n2 q2

− ωp + ωid) + γn1 q1,n2 q2

×
[
2 〈n2 q2| e−i(kp+G−kid)·xp · êi |n1 q1〉

− ~(kp +G− kid) · êi 〈n2 q2| e−i(kp+G−kid)·x |n1 q1〉
]
δj,k
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+
∑

n1 q1,n2 q2,n3 q3

e3

2m3ωpωid~
2V

[
2 〈n2 q2| e−i(kp+G−kid)·xp · êi |n1 q1〉

− ~(kp +G− kid) · êi 〈n2 q2| e−i(kp+G−kid)·x |n1 q1〉
]

×

[
〈n1 q1| e−ikid·xp · êk |n3 q3〉 〈n3 q3| eikp·xp · êj |n2 q2〉 (f0(εn2

(q2))− f0(εn3
(q3)))

[i(ωn1 q1,n2 q2
− ωp + ωid) + γn1 q1,n2 q2

] [i(ωn3 q3,n2 q2
− ωp) + γn3 q3,n2 q2

]

− 〈n1 q1| eikp·xp · êj |n3 q3〉 〈n3 q3| e−ikid·xp · êk |n2 q2〉 (f0(εn3
(q3))− f0(εn1

(q1)))

[i(ωn1 q1,n2 q2
− ωp + ωid) + γn1 q1,n2 q2

] [i(ωn1 q1,n3 q3
− ωp) + γn1 q1,n3 q3

]

]
.

(4.1.1)

Next, I keep only terms with resonances close to the idler frequency (i.e. terms with

ωid in the denominator) and get

σijk(ωs;G) =

∑

n1 q1,n2 q2

−e3
im2ωpωid~V

(f0(εn2
(q2))− f0(εn1

(q1))) 〈n1 q1| e−ikid·xp · êk |n2 q2〉
i(ωn1 q1,n2 q2

+ ωid) + γn1 q1,n2 q2

× 〈n2 q2| ei(kid−G)·x |n1 q1〉 δi,j

+
∑

n1 q1,n2 q2,n3 q3

e3

2m3ωpωid~
2V

[
2 〈n2 q2| e−i(kp+G−kid)·xp |n1 q1〉 − ~(kp +G− kid) 〈n2 q2| e−i(kp+G−kid)·x |n1 q1〉

]
· êi

×

[
〈n1 q1| eikp·xp · êj |n3 q3〉 〈n3 q3| e−ikid·xp · êk |n2 q2〉 (f0(εn2

(q2))− f0(εn3
(q3)))

[i(ωn1 q1,n2 q2
− (ωp − ωid)) + γn1 q1,n2 q2

] [i(ωn3 q3,n2 q2
+ ωid) + γn3 q3,n2 q2

]

− 〈n1 q1| e−ikid·xp · êk |n3 q3〉 〈n3 q3| eikp·xp · êj |n2 q2〉 (f0(εn3
(q3))− f0(εn1

(q1)))

[i(ωn1 q1,n2 q2
− (ωp − ωid)) + γn1 q1,n2 q2

] [i(ωn1 q1,n3 q3
+ ωid) + γn1 q1,n3 q3

]

]
.

(4.1.2)

Since the x ray modes are well above any electronic transitions and keeping in mind

that ωp = ωs + ωid, I can make the following approximation

[i(ωn1 q1,n2 q2
− (ωp − ωid)) + γn1 q1,n2 q2

] ≈ −iωs, (4.1.3)
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and get

σijk(ωs;G) =

∑

n1 q1,n2 q2

−e3
m2ωpωid~V

(f0(εn2
(q2))− f0(εn1

(q1)))

(ωn2 q2,n1 q1
− ωid) + iγn2 q2,n1 q1

× 〈n1 q1| e−ikid·xp · êk |n2 q2〉 〈n2 q2| ei(kid−G)·x |n1 q1〉 δi,j

−
∑

n1 q1,n2 q2,n3 q3

e3

2m3ωpωidωs~
2V

[
2 〈n2 q2| e−i(kp+G−kid)·xp · êi |n1 q1〉

− ~(kp +G− kid) · êi 〈n2 q2| e−i(kp+G−kid)·x |n1 q1〉
]

×

[
〈n1 q1| eikp·xp · êj |n3 q3〉 〈n3 q3| e−ikid·xp · êk |n2 q2〉 (f0(εn2

(q2))− f0(εn3
(q3)))

[(ωn2 q2,n3 q3
− ωid) + iγn2 q2,n3 q3

]

− 〈n1 q1| e−ikid·xp · êk |n3 q3〉 〈n3 q3| eikp·xp · êj |n2 q2〉 (f0(εn3
(q3))− f0(εn1

(q1)))

[(ωn3 q3,n1 q1
− ωid) + iγn3 q3,n1 q1

]

]
.

(4.1.4)

In this expression I used the property ωn1 q1,n2 q2
= −ωn2 q2,n1 q1

, to explicitly show

the resonance dependence on the idler mode. Furthermore, using the phase-matching

condition, I find that (kp+G−kid)·êi = ks ·êi = 0 since I am dealing with transverse

modes and êi is projected in the direction of the signal field. This leads to

σijk(ωs;G) =

∑

n1 q1,n2 q2

−e3
m2ωpωid~V

(f0(εn2
(q2))− f0(εn1

(q1)))

(ωn2 q2,n1 q1
− ωid) + iγn2 q2,n1 q1

× 〈n1 q1| e−ikid·xp · êk |n2 q2〉 〈n2 q2| ei(kid−G)·x |n1 q1〉 δi,j

−
∑

n1 q1,n2 q2,n3 q3

e3

m3ωpωidωs~
2V

〈n2 q2| e−i(kp+G−kid)·xp · êi |n1 q1〉

×

[
〈n1 q1| eikp·xp · êj |n3 q3〉 〈n3 q3| e−ikid·xp · êk |n2 q2〉 (f0(εn2

(q2))− f0(εn3
(q3)))

[(ωn2 q2,n3 q3
− ωid) + iγn2 q2,n3 q3

]

− 〈n1 q1| e−ikid·xp · êk |n3 q3〉 〈n3 q3| eikp·xp · êj |n2 q2〉 (f0(εn3
(q3))− f0(εn1

(q1)))

[(ωn3 q3,n1 q1
− ωid) + iγn3 q3,n1 q1

]

]
.

(4.1.5)
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In this expression all the terms have similar denominator up to a change of indices

and so by rearranging the sums in the second term I get

σijk(ωs;G) =

∑

n1 q1,n2 q2

−e3
m2ωpωid~V

(f0(εn2
(q2))− f0(εn1

(q1)))

(ωn2 q2,n1 q1
− ωid) + iγn2 q2,n1 q1

× 〈n1 q1| e−ikid·xp · êk |n2 q2〉 〈n2 q2| ei(kid−G)·x |n1 q1〉 δi,j

−
∑

n1 q1,n2 q2,n3 q3

e3

m3ωpωidωs~
2V

〈n1 q1| e−ikid·xp · êk |n2 q2〉 (f0(εn2
(q2))− f0(εn1

(q1)))

[(ωn2 q2,n1 q1
− ωid) + iγn2 q2,n1 q1

]

×

[
〈n2 q2| e−i(kp+G−kid)·xp · êi |n3 q3〉 〈n3 q3| eikp·xp · êj |n1 q1〉

− 〈n2 q2| eikp·xp · êj |n3 q3〉 〈n3 q3| e−i(kp+G−kid)·xp · êi |n1 q1〉
]
.

(4.1.6)

This expression can be further simplified by using the completeness relation with

respect to the sum over (n3 q3), such that

∑

n3 q3

|n3 q3〉 〈n3 q3| = 1, (4.1.7)

and get

σijk(ωs;G) =

∑

n1 q1,n2 q2

−e3
m2ωpωid~V

(f0(εn2
(q2))− f0(εn1

(q1)))

(ωn2 q2,n1 q1
− ωid) + iγn2 q2,n1 q1

〈n1 q1| e−ikid·xp · êk |n2 q2〉
{
〈n2 q2| ei(kid−G)·x |n1 q1〉 δi,j

+
1

m~ωs

〈n2 q2|
[
e−i(kp+G−kid)·xp · êi , eikp·xp · êj

]
|n1 q1〉

}
.

(4.1.8)

To simplify this expression, I solved the commutation relation found in the second

term using the identity (see appendix A.3)

[
eik1·x(p · êi), eik2·x(p · êj)

]
= ei(k1+k2)·x [(~k2 · êi) (p · êj)− (~k1 · êj) (p · êi)] ,

(4.1.9)
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and find

[
e−i(kp+G−kid)·x(p · êi), eikp·x(p · êj)

]

= ei(kid−G)·x [(~kp · êi) (p · êj) + (~(kp +G− kid) · êj) (p · êi)] .
(4.1.10)

The result can be further simplified by using

kp = ks + (kid −G); ks = kp − (kid −G),

kp · êi = (kid −G) · êi; ks · êj = −(kid −G) · êj,
(4.1.11)

where in the last line I used the property that the fields are transverse, and I get

σijk(ωs;G) =

∑

n1 q1,n2 q2

−e3
m2ωpωid~V

(f0(εn2
(q2))− f0(εn1

(q1)))

(ωn2 q2,n1 q1
− ωid) + iγn2 q2,n1 q1

〈n1 q1| e−ikid·xp · êk |n2 q2〉
{
〈n2 q2| ei(kid−G)·x |n1 q1〉 δi,j

+
~(kid −G)

m~ωs

· 〈n2 q2| ei(kid−G)·x [êi(p · êj)− êj(p · êi)] |n1 q1〉
}
.

(4.1.12)

Since the idler frequency is assumed to be in the UV/visible range, I use the dipole

approximation and get

σijk(ωs;G) =

∑

n1 q1,n2 q2

−e3
m2ωpωid~V

(f0(εn2
(q2))− f0(εn1

(q1)))

(ωn2 q2,n1 q1
− ωid) + iγn2 q2,n1 q1

〈n1 q1|p · êk |n2 q2〉
{
〈n2 q2| e−iG·x |n1 q1〉 δi,j

+
~(kid −G)

m~ωs

· 〈n2 q2| e−iG·x [êi(p · êj)− êj(p · êi)] |n1 q1〉
}
.

(4.1.13)

For brevity of notation, which will be convenient for later use, I express the conduc-
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tivity in the following way

σijk(ωs;G) =
e

imωp

Dk(−ωid;G)δi,j +
e3

Vm3ωpωs

Bijk(ωid,kid;G),
(4.1.14)

Dk(−ωid;G) =

(
i~e2

mV

) ∑

n1 q1,n2 q2

〈n1 q1|p · êk |n2 q2〉 〈n2 q2| e−iG·x |n1 q1〉

×
− (f0(εn2

(q2))− f0(εn1
(q1)))

~ωid(~ωn2 q2,n1 q1
− ~ωid) + i~γn2 q2,n1 q1

,

(4.1.15)

Bijk(ωid,kid;G) =
∑

n1 q1,n2 q2

~(kid −G) · 〈n2 q2| e−iG·x [êi(p · êj)− êj(p · êi)] |n1 q1〉 〈n1 q1|p · êk |n2 q2〉

×
− (f0(εn2

(q2))− f0(εn1
(q1)))

~ωid(~ωn2 q2,n1 q1
− ~ωid) + i~γn2 q2,n1 q1

,

(4.1.16)

where Dk(−ωid;G) is the induced charge density tensor at the idler mode, which

arises from jAop, and Bijk(ωid,kid;G) is denoted as nonlinear dependence on the idler

mode which arises from jpop.

Note that the first term vanishes for i 6= j, and that Bijk is antisymmetric with

respect to (i ↔ j), and thus vanishes for i = j. This means that the first term,

which is associated with the induced charge, contributes to the nonlinearity when

the polarization of the pump is parallel to the polarization of the signal, while the

second term contributes to the nonlinearity when the pump and signal polarizations

are orthogonal to one another.

4.2 The conductivity for the signal mode in the Wannier

basis

One of the goals of my research was to relate the nonlinear interaction to microscopic

and inter unit cell information, hence I used the Wannier basis, which contains this

information [34]. For this purpose, I first calculate the matrix elements contained
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in the conductivity, in terms of Wannier states and then approximate the Wannier

functions to be very localized.

The Bloch basis |nq〉, can be expressed by a superposition of localized Wannier

functions. I relate between the two bases in the following way

|nq〉 = 1√
N

∑

R

eiq·RT (R) |Wn〉 ,

ψnq(x) = 〈x|nq〉 = 1√
N

∑

R

eiq·RWn(x−R),

(4.2.1)

where N is the number of sites in the lattice, and T (R) = e
−ip·R

~ is the translation

operator, such that a Wannier function of band n at site R, is given by

〈x|T (R) |Wn〉 = 〈x−R|Wn〉 = Wn(x−R). (4.2.2)

Therefore, a matrix element of an operator Ô in the Bloch basis, can be expressed

in the Wannier basis as follows

〈n1 q1| Ô |n2 q2〉 =
1

N

∑

R1 R2

e−i(q1·R1−q2·R2) 〈Wn1
|T (−R1)ÔT (R2) |Wn2

〉 . (4.2.3)

Using the results of appendix B, I find that the relevant matrix elements for the

conductivity (Eq. (4.1.12)) are given by

〈n1 q1| eik·x |n2 q2〉 = δq1,q2+k

∑

R

ei(q1−k)·R 〈Wn1
| eik·xT (R) |Wn2

〉 ,

〈n1 q1| eik·xp |n2 q2〉 = δq1,q2+k

∑

R

ei(q1−k)·R 〈Wn1
| eik·xpT (R) |Wn2

〉 ,
(4.2.4)

where the Kronecker delta in these expressions is

δk1,k2
=

1

N

∑

R

ei(k1−k2)·R. (4.2.5)

This means that it is periodic by a reciprocal lattice vector, namely

δk1,k2
= δk1,k2+G. (4.2.6)
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A proof for the identity given by Eq. (4.2.5), can be found in appendix A.1. Using

the results of Eq. (4.2.4), I find that the second order conductivity for the signal

mode in the Wannier basis is

σijk(ωs;G) =
−e3

m2ωpωid~V

∑

R1 R2 n1 n2

〈Wn1
| e−ikid·xp · êkT (R1) |Wn2

〉

×
{
〈Wn2

| ei(kid−G)·xT (R2) |Wn1
〉 δi,j

+
~(kid −G)

m~ωs

· 〈Wn2
| ei(kid−G)·x [êi(p · êj)− êj(p · êi)]T (R2) |Wn1

〉
}

×
∑

q

(f0(εn2
(q + kid))− f0(εn1

(q))) eiq·(R1+R2)eikid·R1

(ωn2 q+kid,n1 q − ωid) + iγn2 q+kid,n1 q

.

(4.2.7)

When assuming the dipole approximation with respect to the idler mode, I get

σijk(ωs;G) =
−e3

m2ωpωid~V

∑

R1 R2 n1 n2

〈Wn1
|p · êkT (R1) |Wn2

〉

×
{
〈Wn2

| e−iG·xT (R2) |Wn1
〉 δi,j

+
~(kid −G)

m~ωs

· 〈Wn2
| e−iG·x [êi(p · êj)− êj(p · êi)]T (R2) |Wn1

〉
}

×
∑

q

(f0(εn2
(q+ kid))− f0(εn1

(q))) eiq·(R1+R2)

(ωn2 q+kid,n1 q − ωid) + iγn2 q+kid,n1 q

.

(4.2.8)

By representing the conductivity in terms of Wannier functions, the sum over the

Bloch wave vector is separated from the matrix elements, but the sum over the

lattice vectors {R1,R2} includes both the matrix elements and the spectral terms,

which depend on the Bloch wave vector.

Though it implies from this expression, that if I could get rid of the sum over

the lattice vectors, I could separate between the matrix elements and the spectral

dependence of the interaction.
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4.2.1 Approximating the Wannier states to be very localized

In the case of insulators and semiconductors, the Wannier functions are fairly local-

ized, such that the overlap between neighboring functions at different sites is very

weak. To further simplify the expression for the conductivity, I assume that the

Wannier functions are very localized such that, there is no overlap between neigh-

boring sites. This means that a matrix element of an operator Ô, between two

Wannier functions, separated by a lattice vector R is

〈Wn1
| ÔT (R) |Wn2

〉 = δR,0 〈Wn1
| Ô |Wn2

〉 (4.2.9)

By making this assumption, I can separate the contribution of the intermolecular

interactions and the band structure. As hinted in the previous section, by assum-

ing that the Wannier functions are very localized, the summation over the matrix

elements is reduced to a sum over only the band numbers. The rest of the terms

depend on all quantum numbers hence have the meaning of the spectral dependence

of the interaction.

I express the conductivity according to the definition given by Eq. (4.1.14), un-

der the aforementioned approximation, and find that

Dk(−ωid;G) =

(
i~e2

mV

) ∑

n1 n2

〈Wn2
| e−iG·x |Wn1

〉 〈Wn1
|p · êk |Wn2

〉 In2,n1
(εid,kid),

(4.2.10)

Bijk(ωid,kid;G) =
∑

n1 n2

~(kid −G) · 〈Wn2
| e−iG·x [êi(p · êj)− êj(p · êi)] |Wn1

〉

× 〈Wn1
|p · êk |Wn2

〉 In2,n1
(εid,kid),

(4.2.11)

In1,n2
(εid,kid) =

V

(2π)3

ˆ

B.Z.

dq
− (f0(εn1

(q+ kid))− f0(εn2
(q)))

εid [(εn1
(q + kid)− εn2

(q))− εid) + i~γn1 q+kid,n2 q]
,

(4.2.12)

where I denote the spectral dependence of the interaction to be In1,n2
(εid,kid),

and the idler energy is given by εid = ~ωid. The spectral dependence function
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In1,n2
(εid,kid), is expressed by an integral over the first Brillouin zone and was at-

tained by converting the sum over the Bloch wave vector into an integral, namely

∑

q

⇒ V

(2π)3

ˆ

B.Z.

dq. (4.2.13)

At the end of section 4.1, I mentioned the polarization dependence of each term.

The different polarization dependence of the two terms can be used to probe the

contributions of the induced charge density, band transitions dependence, and inter-

molecular interactions matrix elements. The functions Bijk(ωid,kid;G) and

Dk(−ωid;G) contain the information on the interaction dependence on the idler

mode (the long wavelength), the band structure, and inter-molecular interactions

matrix elements.

The information about the inter-molecular interactions is encoded in the matrix

elements and the interaction dependence on the band structure is given by the

function In1,n2
(εid,kid). It is a measure of the number of band transitions (n1 ↔ n2)

with separation of kid and population difference of f0(εn1
(q + kid)) − f0(εn2

(q))

that are closely related to the idler energy εid. Moreover, it is important to note

that for maximally localized Wannier functions (as assumed here) there will only be

contributions from interband transitions, when the dipole approximation is assumed

with respect to the idler mode. This is because under the assumption that the

Wannier functions are maximally localized, they can be taken to be real [35], and

thus

〈Wn1
|p · êk |Wn2

〉 = −〈Wn2
|p · êk |Wn1

〉 ⇒ 〈Wn|p · êk |Wn〉 = 0. (4.2.14)
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5 Model case of a semiconductor with two bands

In this section I focus on the nonlinear interaction in semiconductors. I begin with

the spectral dependence of the nonlinear conductivity for the case of a semiconductor

with two bands, proceed with an example case and conclude with an estimation on

the contribution to the nonlinearity which arises from the matrix elements.

5.1 Spectral dependence

In the previous section, I showed that when the Wannier functions are localized, the

spectral dependence can be described by the function In1,n2
(εid,kid) (Eq. (4.2.12)).

Therefore, to analyze the spectral dependence of the nonlinear conductivity in

the case of a semiconductor, it is sufficient to explore the spectral dependence of

In1,n2
(εid,kid). To get more insight I consider a simple example of a semiconductor

at zero temperature with two energy bands, where the valence band is fully occupied

and the conduction band is completely vacant and in addition, I assume that the

damping coefficients are equal to a constant γ.

I denote the band number for the valence band to be n = 1, and for the conductance

n = 2. Under these assumptions, the Fermi-Dirac distribution is proportional to a

delta function and can be written as

f0(εn(q)) =
δn,1
N

, (5.1.1)

where the factor 1
N
, comes from normalization condition for the density matrix

tr(ρ(t)) = 1. The spectral function In1,n2
(εid,kid) can thus be simplified by express-

ing it using two functions I denote as I+(εid,kid) and I−(εid,kid), which satisfy the

equation

In1,n2
(εid,kid) =

δn1,2δn2,1I+(εid,kid) + δn1,1δn2,2I−(εid,kid),
(5.1.2)
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and their expression is given by

I±(εid,kid) =
v

(2π)3

ˆ

B.Z.

dq
1

ε [(∆ε2,1(q,±kid)∓ ε)± i~γ]

= v

ˆ

dε
g2,1(ε,±kid)

εid [(ε∓ εid)± i~γ]
,

(5.1.3)

where the integration is performed over states between the two bands separated by

a wave vector difference equals to kid as illustrated in Fig. 3,

ε2(q)

ε1(q)

q∗ q∗ + kid

∆ε2,1(q
∗, kid)

Figure 3: Schematic view of the energy difference between bands (2 ↔ 1) at wave

vector q∗, separated by kid.

v is the volume of the primitive cell, ∆εn1,n2
(q,k) = εn1

(q+k)−εn2
(q) is the energy

difference between bands (n1 ↔ n2) at wave vector q that are separated by k, and

the weight function g2,1(ε,±kid) in the integral is the joint density of states, which is

defined as gn1,n2
(ε,k) = 1

(2π)3

´

S(ε)

dS

|∇q(∆εn1,n2
(q,k))| . Note that for k = 0 the expression
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for gn1,n2
(ε,k) reduces to the standard definition of the joint-density of states [36]

and can be considered as such for a wave vector much smaller than a typical size of

the first Brillouin zone (|k| ≪ 2π
a
). From Eq. (5.1.3) and from Fig. 3, it is clear that

εid acts as a resonance in the integral form of the function I+(εid,kid) and therefore,

is more sensitive to the joint-density of states than I−(εid,kid). This sensitivity is

related to the contribution that arises from the number of energy transitions at the

idler energy.

5.2 Example case

To further illustrate the spectral dependence given by I±(εid,kid), I consider the

following simple energy dispersion

ε1(k) = Vss|g1(k)|,

ε2(k) = εgap + Vss(2− |g1(k)|),

g1(k) = cos
(π
2
k1

)
sin

(π
2
k2

)
sin

(π
2
k3

)
+ i sin

(π
2
k1

)
cos

(π
2
k2

)
cos

(π
2
k1

)
.

(5.2.1)

where εgap is the gap energy, Vss is the width of each band, and g1(k) is the band

structure form function I used for this example [37], where in this form of the func-

tion g1(k), the vector is k = (kx, ky, kz) = (2π
a
)(k1, k2, k3). The dependence of the

functions I±(εid,kid ∼ 0) ≡ I±(εid) on small idler energies is evaluated numerically

under the assumption that the width of the levels are very narrow and therefore

the damping coefficient γ is neglected. Furthermore, in order to see how I±(εid)

scale with the band gap energy and to investigate the dependence of the choice of

bandwidth Vss, I define dimensionless energy parameters

ε̃id =
εid
εgap

, β =
2Vss
εgap

,

∆̃ε(k) =
ε2(k)− ε1(k)

εgap
= 1 + β (1− |g1(k)|) ,

(5.2.2)

where ε̃id, β and ∆̃ε(k) are the idler energy, bandwidth energy, and interband transi-

tion energy relative to the band gap energy εgap respectively. With these definitions,
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Figure 4: Band structure dependence of the nonlinear current density: (a) The

term Ĩ+(ε̃id) (green) shows a clear peak at the band gap energy while the term

Ĩ−(ε̃id) (red) decreases monotonically with the relative idler energy ε̃id. (b) The

difference between the Ĩ+(ε̃id) and the Ĩ−(ε̃id) term. The vertical purple line

indicate band gap energy.
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the functions I±(εid) can be expressed by dimensionless functions times a scale factor

I±(εid) =
Ĩ±(ε̃id)

ε2gap
,

Ĩ±(ε̃id) =
v

(2π)3

ˆ

B.Z.

dk
1

ε̃id

(
∆̃ε(k)∓ ε̃id

)
(5.2.3)

where Ĩ±(ε̃id) are dimensionless, and will be used for this analysis. It is interesting

to note that the difference function I+(εid) − I−(εid) can be related to the induced

charge density when the dipole approximation is assumed with respect to the idler

mode. In this case I find that

Dk(−ωid;G) = f
(k)
2,1 (G) (I+(εid)− I−(εid)) , (5.2.4)

f
(k)
2,1 (G) =

(
i~e2

mV

)
〈W2| e−iG·x |W1〉 〈W1|p · êk |W2〉 , (5.2.5)

where f
(k)
2,1 (G) encapsulates the inter-molecular interactions with respect to bands

2, 1 and the reciprocal lattice vector G. I+(εid) − I−(εid) reflects the spectral de-

pendence of the induced charge density on the joint density of states. I show the

dependence of Ĩ±(ε̃id) and of their difference in Fig. 4. The prominent peak in

Ĩ+(ε̃id) near the band gap energy is due to its strong dependence on the large num-

ber of inter-band transitions at the band gap, while Ĩ−(ε̃id) decreases monotonically.

The difference Ĩ+(ε̃id)− Ĩ−(ε̃id) also exhibits a very distinctive peak near the band

gap energy. It is possible to measure this peak if the spectral resolution of the de-

tector is higher than the FWHM of the peak profile. This enhancement near the

band gap energy demonstrates the sensitivity of the nonlinear response and of the

induced charge to the joint density of states, and is also in agreement with a recent

experiment, showing an enhancement just at the band gap energy [2].

To investigate how the bandwidth effects the model, I evaluated Ĩ±(ε̃id) for vari-

ous values of β = 2Vss/εgap. The functions Ĩ±(ε̃id) display the same behavior for
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all β differing only by a factor. This difference is displayed in Fig. 5 where the

peaks of the functions decrease with growing values of β. This decrease is due to

I+
˜
(ε
˜
id=1,β)

I+
˜
(ε
˜
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Figure 5: β dependence of the nonlinear current density: The functions Ĩ+(ε̃id)

(blue) and the difference (Ĩ+(ε̃id)− Ĩ−(ε̃id)) (red) at the band gap energy (ε̃id = 1).

Both decreases with the parameter β.

the broadening of the joint density of states, as β grows, which leads to a reduction

in the density of transitions about the energy gap. The spectral dependence of the

optical response on β, can be used to probe changes in the band structure due to

an external field, and also the corresponding changes in f
(k)
2,1 (G).

5.2.1 Matrix elements in two-dimensional subspace

After describing the spectral dependence of the nonlinear conductivity, I estimate the

contribution of the inter-molecular interactions in the case of two bands by working

in a two-dimensional subspace spanned by the Wannier states of each band. Since
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the operator eiG·x shares the same eigenstates as the position operator, I first find

its matrix representation in the eigenbasis of the position operator and then rotate

this matrix to the original basis (see appendix C for more detail.). Next, I express

the matrix elements contained in Dk(−ωid;G) and Bijk(ωid,kid;G) in terms of the

position and momentum matrix elements and obtain

Dk(−ωid;G) =−
(
i~e2

mV

)
πke

−iG·a sin(G · c) (I+(εid,kid)− I−(εid,kid)) , (5.2.6)

Bijk(ωid,kid;G) =πke
−iG·a cos(G · c) [~(kid −G) · (êiπj − êjπi)]

× (I+(εid,kid) + I−(εid,kid)) ,
(5.2.7)

where

iπk = 〈W2|p · êk |W1〉 = −〈W1|p · êk |W2〉 , (5.2.8)

a = 〈W1|x |W1〉 = 〈W2|x |W2〉 , (5.2.9)

c = 〈W1|x |W2〉 = 〈W2|x |W1〉 , (5.2.10)

and the vectors (π,a, c) are real. This form of the matrix elements is attained when

assuming that the Wannier functions are real, and that [xi, xj ] = 0.

Generally speaking, even in the case of a simple semiconductor the estimation of

the matrix elements requires numerical calculations. However, since the Wannier

functions are commonly constructed using the linear combination of atomic orbital

(LCAO) approach, in which Wannier functions are a constructed by a superposition

of many atomistic wave functions [38], I can get a rough estimation of the magni-

tude of the nonlinear conductivity by approximating the Wannier functions to be

hydrogen wave functions of levels 1s and 2p. For idler and pump photon energies

at 1 eV and 10 keV respectively, I find that the first term of the conductivity is on

the order of (≈ 10−7 A3

W2 ). The second term of the conductivity is on the order of

(≈ 10−11 A3

W2 ).
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6 Summary and outlook

My work shows that the contribution to the nonlinear interaction arises from both

band structure properties and atomic-scale interactions. The results imply that it

is possible to extract atomic-scale information on the valence electrons as predicted

by previous publications [4, 6, 7, 9, 13, 15] but only if the band information can be

separated from the Wannier function contribution. For example, when the Wannier

functions are localized. Consequently, the spectral dependence of the nonlinearity is

essential for the construction of the microscopic information of the electronic states.

Moreover, the population difference between bands or within a band also plays a role

in the spectral dependence. When considering more than two bands, there could be

an effect of interference between several spectral contributions including interband

and intraband transitions, provided that there is a population difference between

these transitions.

In contrast to previous publications [7, 10], this theory predicts that the polariza-

tion of the signal is not only in the direction of the polarization of the pump. The

two polarization components exhibits different spectral dependencies which can be

investigated by measuring each component.

It is important to emphasize that since the nonlinear interaction I discuss is a para-

metric process in nature (the system does not change its state during the nonlinear

interaction) it is inherently ultra-fast. It is therefore very likely that it would be

possible to use the nonlinear x-ray and long wavelength interaction for the study

of ultra-fast dynamics in solids. The theory implies that pump-prob measurements

can be used to study the femtosecond and sub-femotosecond dynamics of interesting

processes. Examples include the variation of the populations between bands, ultra-

fast charge transfer between electronic states, optically induced chemical potential
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variations, ultra-fast (optically induced) dynamics of band structures, and ultra-fast

phase transitions.

This formalism can be combined with standard Ab initio methods for further stud-

ies of the nonlinear x ray and optical/UV mixing effects in many solid state systems.

Furthermore, effects which rely on nonlinear interactions can be used to reveal a

very broad band spectroscopic information ranging from sub eV to several hundred

of eV and structural information of the valence electrons by using a single appara-

tus. By using SPDC of x-rays to long wavelengths, the energy scan can be done by

tuning the angle of the sample and the energy is selected by the detection system.

48



References

[1] R. Cohen and S. Shwartz, “Theory of nonlinear interactions between x rays and

optical radiation in crystals,” Physical Review Research, vol. 1, no. 3, p. 033133,

2019.
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A Auxiliary identities

In this section I sum up a few identities used in various parts of the calculation.

A.1 Periodic Kronecker delta function

In this section, I will prove the following relation

∑

R

eik·R = Nδk,0. (A.1.1)

Since the volume of the crystal is arbitrarily large, one can assume that k follow the

Born-von Karman condition, namely that

k =
3∑

i=1

mi

Ni
bi, (A.1.2)

where {bi} is the set of primitive vectors in the reciprocal lattice, Ni is the number of

sites in the i-th direction of the lattice, and mi is an integer, such that mi ≤ Ni.

Furthermore, R = Rn1,n2,n3
=

3∑
j=1

njaj and
∑
R

=
3∏

j=1

Nj−1∑
nj=0

so the sum is simply

∑

R

eik·R =

3∏

j=1



Nj−1∑

nj=0

exp

{
i

(
2πmjnj

Nj

)}
 =

3∏

j=1



Nj−1∑

nj=0

(
e
i
2πmj

Nj

)nj


 . (A.1.3)

To evaluate the sum in the product I will use

N−1∑

n=0

dn =
dN − 1

d− 1
, (A.1.4)

and get

∑

R

eik·R =
3∏

j=1


e

i2πmj − 1

e
i
2πmj

Nj − 1




︸ ︷︷ ︸
Njδmj ,0

= Nδk,0. (A.1.5)

Note: the delta is for k within the first Brillouin zone, since for q = k+G, I get

∑

R

ei(k+G)·R =
∑

R

eik·R = Nδk,0. (A.1.6)
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A.2

I define

I(2, 1,k) =

ˆ

V

dx
[
ψ∗
n2 q2

(x) (∇ψn1 q1
(x))− ψn1 q1

(x)
(
∇ψ∗

n2 q2
(x)

)]
eik·x, (A.2.1)

I(2, 1,k) =

ˆ

V

dxψ∗
n2 q2

(x)eik·x (∇ψn1 q1
(x))−

ˆ

V

dxψn1 q1
(x)eik·x

(
∇ψ∗

n2 q2
(x)

)

︸ ︷︷ ︸
Ia,k

.

(A.2.2)

Using the relation p = −i~∇ the first term can be expressed by a matrix element such

that

I(2, 1,k) =
i

~
〈n2 q2| eik·xp |n1 q1〉 − Ia,k. (A.2.3)

The second term can also be expressed by matrix elements

Ia,k =

ˆ

V

dxψn1 q1
(x)eik·x

(
∇ψ∗

n2 q2
(x)

)
, (A.2.4)

integrating by parts and getting

Ia,k = −
ˆ

V

dxψ∗
n2 q2

(x)∇
(
eik·xψn1 q1

(x)
)

= −
ˆ

V

dxψ∗
n2 q2

(x)
[
ikeik·xψn1 q1

(x) + eik·x∇ψn1 q1
(x)

]

= −ik
ˆ

V

dxψ∗
n2 q2

(x)eik·xψn1 q1
(x)−

ˆ

V

dxψ∗
n2 q2

(x)eik·x∇(ψn1 q1
(x))

=
−i
~

[
~k 〈n2 q2| eik·x |n1 q1〉+ 〈n2 q2| eik·xp |n1 q1〉

]
.

(A.2.5)

Note that I’ve discarded the surface term1. plugging it back to I(2, 1,k) and getting

I(2, 1,k) =
i

~

[
2 〈n2 q2| eik·xp |n1 q1〉+ ~k 〈n2 q2| eik·x |n1 q1〉

]
. (A.2.6)

1It can be shown that the surface term vanishes due to the periodicity of the Bloch wave

functions (Born-Von Karman boundary conditions) and because the k vectors can be taken to be

periodic with the bulk, namely k =
3∑

i=1

mi

Ni

bi.
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A.3

To evaluate the following expression

[
eik1·x(p · êi), eik2·x(p · êj)

]
, (A.3.1)

I will use the identity

[AB,CD] = A[B,C]D + [A,C]BD +CA[B,D] +C[A,D]B, (A.3.2)

and get

[
eik1·x(p · êi), eik2·x(p · êj)

]

= eik1·x
[
(p · êi), eik2·x

]
(p · êj) +

[
eik1·x, eik2·x

]
(p · êi)(p · êj)

+ eik2·xeik1·x[(p · êi), (p · êj)] + eik2·x
[
eik1·x, (p · êj)

]
(p · êi)

= eik1·x
[
(p · êi), eik2·x

]
(p · êj)− eik2·x

[
(p · êj), eik1·x

]
(p · êi).

(A.3.3)

To proceed, I use the following identity

[p, V (x)] = −i~∇V (x), (A.3.4)

and I find that

[
(p · êi), eik2·x

]
= −i~

(
∇eik2·x

)
· êi = (~k2 · êi) eik2·x, (A.3.5)

and so I get

[
eik1·x(p · êi), eik2·x(p · êj)

]
= ei(k1+k2)·x [(~k2 · êi) (p · êj)− (~k1 · êj) (p · êi)] .

(A.3.6)

B Matrix elements calculation in the Wannier ba-

sis

Here I review general remarks regarding the representation of matrix elements in the

Wannier basis. A matrix element in the Bloch basis, can be expressed by a superposition
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of matrix elements in the Wannier basis.

〈n1 q1| Ô |n2 q2〉 =
1

N

∑

R1 R2

e−i(q1·R1−q2·R2) 〈Wn1
|T (−R1)ÔT (R2) |Wn2

〉 . (B.1)

If the operator being evaluated strictly depend on space (Ô = Ô(x)) I get

〈n1 q1| Ô |n2 q2〉

=
1

N

∑

R1 R2

e−i(q1·R1−q2·R2) 〈Wn1
|T (−R1)Ô(x)T (R2) |Wn2

〉

=
1

N

∑

R1 R2

e−i(q1·R1−q2·R2) 〈Wn1
|T (−R1)Ô(x)T (R1)T (−R1)T (R2) |Wn2

〉

=
1

N

∑

R1 R2

e−i(q1·R1−q2·R2) 〈Wn1
| Ô(x+R1)T (R2 −R1) |Wn2

〉

(B.2)

The matrix elements can be written in a different way, by saying that

〈Wn1
|T (−R1)ÔT (R2) |Wn2

〉 =
∑

R3

δR1−R2,R3
〈Wn1

|T (−(R2 +R3))ÔT (R2) |Wn2
〉 ,

(B.3)

inserting this back to 〈n1 q1| Ô |n2 q2〉 I get

〈n1 q1| Ô |n2 q2〉

=
1

N

∑

R3

∑

R1 R2

δR1−R2,R3
e−i(q1·R1−q2·R2) 〈Wn1

|T (−(R2 +R3))ÔT (R2) |Wn2
〉

〈n1 q1| Ô |n2 q2〉 =
∑

R3

e−iq1·R3
1

N

∑

R2

e−i(q1−q2)·R2 〈Wn1
|T (−(R2 +R3))ÔT (R2) |Wn2

〉 .

(B.4)

There are 3 types of matrix elements of interest:

1. 〈n1 q1| eik·x |n2 q2〉 .

2. 〈n1 q1| eik·xp |n2 q2〉 .

3. 〈n1 q1|p |n2 q2〉 .

(B.5)

I will consider each case separately,

Case 1:

〈n1 q1| eik·x |n2 q2〉

=
∑

R3

e−iq1·R3
1

N

∑

R2

e−i(q1−q2)·R2 〈Wn1
|T (−(R2 +R3))e

ik·xT (R2) |Wn2
〉 ,

(B.6)
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I use

T (−R1)e
ik·xT (R2) = eik·(x+R1)T (R2 −R1) = eik·R1eik·xT (R2 −R1), (B.7)

T (−(R2 +R3))e
ik·xT (R2) = eik·(x+(R2+R3))T (R2 − (R2 +R3))

= eik·(R2+R3)eik·xT (R2 − (R2 +R3))

T (−(R2 +R3))e
ik·xT (R2) = eik·(R2+R3)eik·xT (−R3),

(B.8)

and get

〈n1 q1| eik·x |n2 q2〉 =
∑

R3

e−iq1·R3
1

N

∑

R2

e−i(q1−q2)·R2eik·(R2+R3) 〈Wn1
| eik·xT (−R3) |Wn2

〉 ,

〈n1 q1| eik·x |n2 q2〉 =
∑

R3

e−i(q1−k)·R3
1

N

∑

R2

e−i(q1−q2−k)·R2 〈Wn1
| eik·xT (−R3) |Wn2

〉 .

(B.9)

If k = G I get

〈n1 q1| eiG·x |n2 q2〉 = δq1,q2

∑

R3

e−iq1·R3 〈Wn1
| eiG·xT (−R3) |Wn2

〉 . (B.10)

If k 6= G I get

〈n1 q1| eik·x |n2 q2〉 = δq1,q2+k

∑

R3

e−i(q1−k)·R3 〈Wn1
| eik·xT (−R3) |Wn2

〉 . (B.11)

Case 2: In this case I get a very similar result, because the momentum operator commutes

with the translation operator.

If k = G I get

〈n1 q1| eiG·xp |n2 q2〉 = δq1,q2

∑

R3

e−iq1·R3 〈Wn1
| eiG·xpT (−R3) |Wn2

〉 . (B.12)

If k 6= G I get

〈n1 q1| eik·xp |n2 q2〉 = δq1,q2+k

∑

R3

e−i(q1−k)·R3 〈Wn1
| eik·xpT (−R3) |Wn2

〉 . (B.13)

Case 3:

〈n1 q1|p |n2 q2〉 = δq1,q2

∑

R3

e−iq1·R3 〈Wn1
|pT (−R3) |Wn2

〉 . (B.14)
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C Matrix elements calculation in a reduced sub-

space

A matrix representation of an operator Ô in some basis, is given by

Ônm = 〈n| Ô |m〉 , (C.0.1)

where I denote |n〉 as the basis of choice.

In many quantum systems, the states are spanned in an infinite dimensional space, and

in such a case, the matrix representation will be infinitely large, and might not be use-

ful. However, I can limit the problem to a finite number of states, and then the matrix

representation will be finite.

C.1 In k-dimensional subspace

In this section I will work in a k-dimensional subspace, and show how it is possible to

represent a complicated operator.

I start with finding the representation of the operator f(Ô), where Ô is an hermitian

operator and f is an analytical function. Therefore, f(Ô) can be expressed by a Taylor

power series

f(Ô) =
∞∑

j=0

cjÔ
j . (C.1.1)

It is sufficient to use the matrix representation of Ô for us to find the matrix representation

of f(Ô). Let U be the diagonalizing unitary matrix of Ô, such that

U †ÔU = ˆ̃
O, (C.1.2)

where ˆ̃
O is diagonal, such that





〈n|U †ÔU |n〉 = 〈n| ˆ̃O |n〉 = λn,

〈n|U †ÔU |m〉 = 〈n| ˆ̃O |m〉 = 0, for n 6= m.

(C.1.3)
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This is also true for any power of Ô, such that




〈n|U †ÔjU |n〉 = 〈n| ˆ̃Oj |n〉 = λ
j
n,

〈n|U †ÔjU |m〉 = 〈n| ˆ̃Oj |m〉 = 0, for n 6= m,

(C.1.4)

for this reason, it is clear that




〈n|U †f(Ô)U |n〉 = 〈n| f( ˆ̃O) |n〉 = f(λn),

〈n|U †f(Ô)U |m〉 = 〈n| f( ˆ̃O) |m〉 = 0, for n 6= m.

(C.1.5)

This means that the matrix representation of f(Ô) can be obtained by rotating back its

diagonal form

〈n| f(Ô) |m〉 = 〈n|Uf( ˆ̃O)U † |m〉 . (C.1.6)

This means that if I work in a reduced subspace, equipped with the diagonalizing matrix

U and the eigenvalues of Ô, I can find a matrix representation of a function of Ô.

C.2 Evaluting the matrix elements of the nonlinear conduc-

tivity in a reduced subspace of 2 dimensions

Here, I work out the matrix representation for the momentum and position when assuming

just two bands.

I assume that the Wannier states are real, and therefore

x =


x11 x12

x12 x22


 x̂+


y11 y12

y12 y22


 ŷ +


z11 z12

z12 z22


 ẑ ,

p =


 0 −iπ1
iπ1 0


 x̂+


 0 −iπ2
iπ2 0


 ŷ +


 0 −iπ3
iπ3 0


 ẑ ,

(C.2.1)

note that

〈W1|x |W2〉 = 〈W2|x |W1〉 ,

〈W1|p |W2〉 = −〈W2|p |W1〉 〈W1|p |W1〉 = 〈W2|p |W2〉 = 0.

(C.2.2)

Moreover, the position matrix elements are all real, while the momentum matrix elements

are imaginary.
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I can further simplify the expression for the position operator. Before doing so, I denote

the diagonal matrix elements of the position operator in the following way

x11 = a1, x22 = b1, x12 = c1,

y11 = a2, y22 = b2, y12 = c2,

z11 = a3, z22 = b3, z12 = c3.

(C.2.3)

So the position operator is now

x · êj = xj =


aj cj

cj bj


 . (C.2.4)

The position operator can be further simplified by evaluating

〈W1|xixj |W2〉 ,

and demand that

〈W1| xixj |W2〉 = 〈W1|xjxi |W2〉 . (C.2.5)

To do so, I use the completeness relation for our subspace

〈W1|xixj |W2〉 = 〈W1|xi (|W1〉 〈W1|+ |W2〉 〈W2|)xj |W2〉

= 〈W1|xi |W1〉 〈W1| xj |W2〉+ 〈W1|xi |W2〉 〈W2| xj |W2〉

= aicj + cibj,

(C.2.6)

but on the other hand

〈W1|xixj |W2〉 = ajci + cjbi. (C.2.7)

Demanding that the two matrix elements are identical, I get

aicj + cibj = ajci + cjbi ⇒ aj = bj , (C.2.8)

and the position operator now takes the form

x · êj = xj =


aj cj

cj aj


 . (C.2.9)
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C.2.1 Diagonalizing position and momentum operators

The diagonalizing matrices for the position and momentum are the following

Ux =
1√
2


1 1

1 −1


 ,

Up =
1√
2


1 i

i 1


 ,

(C.2.10)

such that

x̃ = U †
xxUx =


a+ c 0

0 a− c


 =


λx+ 0

0 λx−


 ,

p̃ = U †
ppUp =


π 0

0 −π


 ,

(C.2.11)

where

a = (a1, a2, a3) , c = (c1, c2, c3) ,

π = (π1, π2, π3) ,

(C.2.12)

and so any function of the position operator in its diagonal form is

f(x̃) =


f(λx+) 0

0 f(λx−)


 , (C.2.13)

and thus

f(x) = Uxf(x̃)U
†
x =

1

2


(f(λx+) + f(λx−)) (f(λx+)− f(λx−))

(f(λx+)− f(λx−)) (f(λx+) + f(λx−))


 . (C.2.14)

This means

e−iG·x =
1

2



(
e−iG·λx+ + e−iG·λx−

) (
e−iG·λx+ − e−iG·λx−

)

(
e−iG·λx+ − e−iG·λx−

) (
e−iG·λx+ + e−iG·λx−

)




= e−i 1
2
G·(λx++λx−)


 cos

(
1
2G · (λx+ − λx−)

)
−i sin

(
1
2G · (λx+ − λx−)

)

−i sin
(
1
2G · (λx+ − λx−)

)
cos

(
1
2G · (λx+ − λx−)

)


 .

(C.2.15)
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note that
1

2
(λx+ + λx−) = a = 〈W1|x |W1〉 = 〈W2|x |W2〉 ,

1

2
(λx+ − λx−) = c = 〈W1|x |W2〉 = 〈W2|x |W1〉 .

(C.2.16)

Using these relations I get

e−iG·x = e−iG·a


 cos(G · c) −i sin(G · c)

−i sin(G · c) cos(G · c)


 . (C.2.17)

Now I can evaluate e−iG·xp · êj = e−iG·xpj and find

e−iG·xpj = e−iG·x = e−iG·a


 cos(G · c) −i sin(G · c)

−i sin(G · c) cos(G · c)





 0 −iπj
iπj 0




= e−iG·a


 πj sin(G · c) −iπj cos(G · c)

iπj cos(G · c) −πj sin(G · c)


 .

(C.2.18)
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תקציר

גבישים של ליניארית הלא האופטית התגובה עבור תיאורטי תאור פיתחתי זו, בעבודה

פרמטרית" תדר "המרת תהליך עבור התגובה בתאור והתמקדתי נראה, ואור רנטגן לקרינת

לא תגובה של האנרגטית התלות את בחנתי כן, כמו נראה. אור אל רנטגן קרינת של

מקרה עבור אטומית הבין מהאינטרקציה המגיעה התרומה את והערכתי זו, ליניארית

של בפורמליזם ההפרעות תורת על מסתמכת התיאורטית הגישה אנרגיה. פסי שני של

מאפשרת היא סטטיסטיים, פרמטרים על מסתמכת זו שגישה מכיוון הצפיפות. מטריצת

אכלוס, התפלגות פרמי, אנרגית טמפרטורה, תלות כגון: סטטיסטיות תכונות לחקר גישה

בחומר. האנרגיה מצבי וצפיפות

את בחשבון לקחו זה, תדרים בתחום ליניארית הלא התגובה של מוקדמים תאורים

הנחות, אותן תחת החומר. של הפסים מבנה את לא אך הגבישי, המבנה של המחזוריות

בחומר המיקרוסקופי למידע ליניארית הלא התגובה בין לקשר אלו תיאוריות הצליחו

אטומית. ברזולוציה הערכיות אלקטרוני אודות

לפוטנציאל הקשור מידע מכילה גם שהאינטרקציה כך על מעידה זו עבודה לכך, בניגוד

שתי בין להפריד כדי הנדרשים התנאים את ומתארת הפסים, מבנה למשל בחומר, המחזורי

להשתמש ניתן אשר חדשה, קיטוב תלות שקיימת חוזה התיאוריה כן, כמו אלו. תרומות

החומר. על נוסף מידע לספק ובכך האינטרקציה, של שונות תרומות לחקור כדי בה

מבנה של מתכונות מתרומה גם נובע האינטרקציה שמקור מעידה והתיאוריה היות

לשימוש הדרך את לסלול יכולה היא אטומיות, בסקלות מאינטרקציות וגם הפסים,

ספקטרוסקופי מידע לחשוף כדי יותר ארוכים גל ואורכי רנטגן בקרני ליניארים לא באפקטים

הערכיות. אלקטרוני אודות מבני מידע עם יחד רחב

א



של בהדרכתו נעשתה זו עבודה

שוורץ שרון פרופ'

בר־אילן אוניברסיטת של לפיזיקה המחלקה מן



בר־אילן אוניברסיטת

חומרים של ליניארית לא אופטית תגובה

הרנטגן קרני בתחום מחזוריים

כהן רון

מוסמך תואר קבלת לשם מהדרישות כחלק הוגשה זו עבודה

בר־אילן אוניברסיטת של לפיזיקה במחלקה

תש"פ גן רמת


