
BAR-ILAN UNIVERSITY 

 

 

 

Sub-Attosecond X-Ray 

Hong-Ou-Mandel Metrology 

 

 

Sergey Volkovich 

 

 

 

 

Submitted in partial fulfillment of the requirements for the 

Master’s Degree in the Department of Physics, 

Bar-Ilan University 

 

 

 

Ramat Gan, Israel 2019 



 

 

 

  



This work was carried out under the supervision of 

 

Prof. Sharon Shwartz 

 

Department of Physics, Bar-Ilan University 

  



  



Acknowledgement 

I would like to express my gratitude to my supervisor Prof. Sharon Shwartz, for his 

guidance and our insightful discussions throughout my Master's work. 

I would also like to thank the Physics Department at Bar-Ilan University, for deepening 

my understanding of nature and for the administrative assistance throughout my undergraduate 

and graduate studies. 

Finally, I would like to thank my family and my friends, for all of their support through 

all these years.  

  



  



Contents 

Abstract ....................................................................................................................................... i 

1. Introduction ............................................................................................................................ 1 

2. Background ............................................................................................................................ 4 

2.1. The Hong-Ou-Mandel Effect .......................................................................................... 4 

2.2. Electromagnetic Field Quantization ............................................................................... 7 

2.3. X-Ray Biphotons Sources ............................................................................................. 10 

2.4. X-Ray Interferometry.................................................................................................... 14 

2.5. Photodetectors ............................................................................................................... 17 

3. Procedures ............................................................................................................................ 18 

3.1. System Design .............................................................................................................. 18 

3.2. Device Modeling ........................................................................................................... 19 

3.3. Coincidence Count Rate Calculation ............................................................................ 20 

3.4. Simulations ................................................................................................................... 21 

4. Outcomes ............................................................................................................................. 22 

4.1. System Design .............................................................................................................. 22 

4.2. Device Modeling ........................................................................................................... 24 

4.2.1. SPDC Source Model .............................................................................................. 24 

4.2.2. Phase Shifter Model ............................................................................................... 27 

4.2.3. Multilayer Optical Devices Model......................................................................... 28 

4.2.4. Photodetectors Model ............................................................................................ 30 

4.3. Coincidence Count Rate Calculation ............................................................................ 31 

4.3.1. SPDC Source Coincidence Count Rate ................................................................. 31 

4.3.2. HOM System Output Ladder Operators ................................................................ 35 

4.3.3. HOM System Second Order Correlation Function ................................................ 37 

4.3.4. HOM System Coincidence Count Rate ................................................................. 44 

4.3.5. SPDC Source Probability Amplitude..................................................................... 46 



4.4. Simulations ................................................................................................................... 48 

4.4.1. SPDC Source Simulation ....................................................................................... 48 

4.4.2. Multilayer Optical Devices Simulation ................................................................. 50 

4.4.3. HOM Interferometer Simulation............................................................................ 52 

5. Discussion and Summary ..................................................................................................... 53 

6. Bibliography ........................................................................................................................ 56 

Hebrew Abstract ........................................................................................................................ א 

 

 

  



i 

Abstract 

In this work, I present a new metrology technique that allows the measurement of sub-

attosecond delays and sub-Angstrom optical path differences, by using the Hong-Ou-Mandel 

effect in the x-ray regime. I propose a realistic scheme for an optical system demonstrating the 

effect with x-rays, which is compatible with existing technologies. This is the first 

consideration of the quantum effect of x-ray Hong-Ou-Mandel and is an important step in the 

expansion of quantum optics into the x-ray regime. Furthermore, I anticipate that the scheme I 

describe in this work will lead to numerous novel applications for fundamental science and 

applicative research, and especially to quantum measurement techniques with ultra-high 

precision at x-ray wavelengths. 

The Hong-Ou-Mandel effect is a quantum effect of interference between the wave 

functions of two indistinguishable photons, which enter simultaneously into two different input 

ports of a 50:50 beam splitter. As a consequence of their indistinguishability, the photons are 

always detected at the same output port of the beam splitter, and the coincidence measurement 

of the output ports is nullified, which is a classically unexpected result. When the optical path 

difference between the photons increases, they no longer reach the beam splitter simultaneously 

and become more distinguishable. This raises the probability of coincident detection, which 

reaches 
1

2
 when they become completely distinguishable. Thus, the delay between the photons 

can be measured on extremely short time scales. 

Extending the Hong-Ou-Mandel effect to the x-ray regime will open new and intriguing 

possibilities for the study of quantum physics by utilizing the advantages of the high energy of 

the x-ray photons. Examples for such advantages are the penetrability of x-rays relative to 

optical photons, the ability to modulate them to carry more information, and the availability of 

photon number resolving detectors, which demonstrate high detection efficiencies and 

negligible background noise. The main advantages of this measurement approach over the 

present-day techniques are the ultra-high precision and the relaxed requirements for the 

stability of the system and for the coherence of the source. Hence, it can overcome the 

hindrances of present-day technologies, enabling the measurements of effects and quantities 

that are out of their reach, and will be advantageous for the broad spectrum of scientific 

disciplines. 

To demonstrate the effect, I start by designing the optical system schematically. The 

proposed system is comprised of a source for the generation of indistinguishable broadband x-

ray photon pairs, based on spontaneous parametric down-conversion, and a multilayer-based 
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interferometer, which accommodates the relatively wide bandwidth. I proceed to model the 

optical devices mathematically, then I calculate analytically the coincidence count rate at the 

output of the system, and finally I simulate an example system using Mathematica, for 

parameters which fit the design goals and reflect realistic device properties. The full width half 

max of the coincidence count rate versus the delay between the biphotons is found to be about 

0.6 attoseconds. This highlights the capability of this metrology technique to measure sub-

attosecond time delays and sub-Angstrom optical path differences. 
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1. Introduction 

Since its first observation [1], the Hong-Ou-Mandel (HOM) effect has attracted a great 

attention due to its importance for fundamental quantum sciences and since it holds a great 

promise for new quantum technologies [2–16]. The HOM effect is a quantum effect that is 

based on the interference of the wave functions of the photons rather than on the interference 

of classical waves. The striking consequence of this quantum interference is manifested when 

two indistinguishable photons arrive simultaneously at the two different input ports of an ideal 

beam splitter. In contrast to classical waves, the two photons will always be detected at the 

same output port of the beam splitter. As a result, coincidence measurements of the output port 

are null as long as the photons at the two input ports are indistinguishable. 

In a typical HOM experiment two indistinguishable photons are generated and propagate 

along two paths. By varying one of the optical paths, it is possible to control the delay between 

the two photons so that they do not arrive at the beam splitter simultaneously and their 

distinguishability is raised. The more distinguished the photons become, the higher the 

probability of coincident detection gets, until it reaches 
1

2
 at complete distinguishability. This 

behavior can be used to measure the delay between the arrival times of the photons.  

The ability of the HOM effect to detect the indistinguishability of photons on very short 

time scales has led to development of various approaches based on the effect for the 

measurements of ultrashort delays and optical path differences [17–20]. Measurements based 

on the HOM effect are more sustainable than measurements with classical interferometers, 

because unlike classical interferometers, HOM measurements are independent of the phase 

fluctuations of the optical beams. Consequently, in recent years several schemes and 

approaches for sub-femtosecond delay measurements with optical beams have been suggested 

and implemented [18,19]. 

Generally speaking, the extension of quantum optics itself to the x-ray regime can 

provide new intriguing opportunities. This is due to the availability of photon number resolving 

detectors with higher detection efficiencies and negligible signal to noise ratios, made possible 

by the relatively high photon energies. In addition, in many cases the photons are more 

penetrative than optical photons, and as they possess higher frequencies, they can be modulated 

to carry more information. 

Several works on quantum effects in the x-ray regime have been reported in the past few 

years [21]. For example, the necessity of a full quantum theory to describe SPDC in the x-ray 

regime has been demonstrated in [22], quantum effects such as electromagnetically induced 
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transparency [23], collective Lamb shift [24], modulation of single 𝛾 photons [25], ghost 

imaging [26], quantum enhanced detection [27], and vacuum-assisted generation of atomic 

coherences [28] have been reported as well. In addition, several schemes for the generation of 

x-ray polarization entangled photons have been proposed [29–31]. 

To reap the benefits of extending the HOM effect to the x-ray regime, a key requirement 

is a source that can produce indistinguishable photon pairs (also known as biphotons). One 

prominent candidate source is spontaneous parametric down conversion (SPDC). In this type 

of source, a pump interacts with the vacuum field in a nonlinear crystal and indistinguishable 

biphotons can be generated [32]. Indeed, the keV wide bandwidth that has been reported for x-

ray SPDC [22,33] suggests that the corresponding biphoton correlation time is on the order of 

a few attoseconds, which opens the possibility to measure delays that are on that order or even 

shorter, by using advanced approaches such as the Fisher information analysis [19,20]. In 

addition, the implementation of the x-ray HOM effect can lead to the development of quantum 

optical coherence tomography, for measurements of very short spatial scales and tiny refractive 

index differences at an unprecedented precision [34–37]. This would be appealing for the 

imaging of biological samples.  

However, the possibility to measure such a broad spectrum HOM effect is not clear. The 

main challenge is that x-ray mirrors and beam splitters rely either on small angle reflection or 

on Bragg scattering [38,39]. Small angle reflection can be used to reflect a very broad spectrum, 

but the generated photons propagate in an angular cone, which is much broader than the 

acceptance angle of small angle reflection devices. Bragg scattering from crystals is narrow in 

both angle and spectrum, thus with crystal mirrors and beam splitter the HOM effect would be 

narrowband and the corresponding dip of the coincidence count rate would be limited to an 

order of a few femtoseconds. The alternative possibility is to use Bragg scattering from 

artificial periodic structures made by multilayers. However, it is not clear whether the technical 

feasibility of the present-day multilayer technology allows the fabrication of such a system. It 

is also not clear a priori that the photons that hit upon the two ports of the beam splitter are 

indeed indistinguishable, which is an essential requirement for the observation of the HOM 

effect.  

In this work I describe a system that is based on available technologies for measuring the 

HOM effect at x-ray wavelengths, which consists of a nonlinear crystal for the generation of 

biphotons, a phase shifter, two multilayer mirrors, and a multilayer beam splitter. I show that 

the photons that hit the beam splitter are indeed indistinguishable when arriving simultaneously 

and that the system can support the detection of very short delays. I consider a specific example 
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where the full width half max (FWHM) of the dip is about 0.6 attoseconds and explain how to 

control this width. Consequently, my work indicates on the possibility for the development of 

systems that are capable to measure sub-attosecond time delays and sub-Angstrom optical path 

differences. 
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2. Background 

In this section I present the background regarding the HOM effect and the physical 

entities composing the HOM system. I start by describing and explaining the HOM effect and 

then I describe the models that I use to represent each of the physical entities participating in 

the effect, which are the electromagnetic field, the biphotons source, the interferometer and the 

photodetectors. 

 

2.1. The Hong-Ou-Mandel Effect 

The HOM effect is a quantum optical effect of interference between the wave functions 

of an indistinguishable photon pair, in which the two photons enter different input ports of a 

50:50 beam splitter. As a result of this setup, the exiting photons are always detected at the 

same output port of the beam splitter [1,32]. The system demonstrating the effect can be seen 

in Fig. 1. 

 

 

FIG. 1. Schematic diagram of the Hong-Ou-Mandel effect system. Two indistinguishable 

photons are generated from a source, arrive at the two different input ports of a 50:50 beam 

splitter (Input 1 and Input 2), and are detected by two detectors, each positioned at one of the 

two different output ports of the beam splitter (Output 3 and Output 4). 

 

To understand the effect, consider an ideal beam splitter, whose input ports will be 

marked by “1” and “2” and output ports will be marked by “3” and “4”. Classically, the energy 

of the radiation is expected to split between the output ports of the beam splitter, being 

detectable at both of them simultaneously. In contrast, when considering the quantization of 

radiation, each photon can only either reflect or transmit, which creates four output 

combinations. As we will see next, the indistinguishability of the biphotons causes only two 

outcomes to be possible, those where both photons exit the same port. Therefore, the number 

of coincidence counts between the outputs is nullified, and measuring it exhibits the non-

classical behavior of the electromagnetic radiation. 

Detector 
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Beam 

Splitter 

Source 

Detector 

B 
Input 

2 

Input 
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Output 
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This can be described mathematically by modelling the beam splitter by a unitary 

transformation, relating the input and output creation operators. As an example, I shall choose: 

 
(
�̂�1
†

�̂�2
†
) =

1

√2
(
1 1
1 −1

) (
�̂�3
†

�̂�4
†
), (2.1.1) 

where �̂�𝑖
†
 is a photon creation operator at port "𝑖". Every photon enters a different input port, 

so for single mode photons the input state can be described by: 

 |𝜓⟩𝑖𝑛 = |1⟩1|1⟩2, (2.1.2) 

where |𝑛⟩𝑖 is a Fock state representing "𝑛" photons at port "𝑖". The output state is then 

calculated to be: 

 
|𝜓⟩𝑜𝑢𝑡 =

1

√2
(|2⟩3|0⟩4 − |0⟩3|2⟩4), (2.1.3) 

which shows that the exiting photons are always detected at the same port. Therefore, the 

coincidence count rate between both output ports drops to zero, which is a purely quantum 

result. We see that the intensity correlation is the quantity of interest. 

As the distinguishability of the biphotons raises, the probability of coincident detection 

as a function of the distinguishability begins to raise from zero, until it reaches 
1

2
 at complete 

distinguishability. When considering multimode photons, which possess a temporal 

distribution, the biphotons can be distinguished by their time of arrival to the beam splitter. 

This distinguishability can be varied by changing the optical path difference between the 

biphotons, thus creating a relative delay between them. In the private case in which the 

biphotons possess equal distributions, they become completely distinguishable when the delay 

between them reaches the width of their probability density function in the time domain. 

The behavior of the number of coincidence counts when the distinguishability between 

the biphotons is changed can be seen in Fig. 2, which is taken from the original paper [1]. In 

the original experiment the delay between the biphotons was modified by changing the position 

of the beam splitter. When the beam splitter is positioned such that the relative delay nullifies 

and the biphotons are indistinguishable, the number of coincidence counts dips towards zero. 

The width of the dip is comparable to the width of the biphoton probability density function in 

the time domain, or, equivalently, to the inverse of its width in the frequency domain. 

The time interval between the biphotons was measured to be as short as approximately 

100 fs, and I will show that in my proposed system this interval decreases to attoseconds. This 

occurs since in my system the bandwidth that reaches the beam splitter was designed to be 

wider than the bandwidth in the original experiment by over 5 orders of magnitude. 
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FIG. 2. The measured (dotted line) and theoretical (solid line) number of coincidence counts 

in ten minutes as a function of the displacement of the beam splitter in the original paper. The 

vertical error bars correspond to a standard deviation and the horizontal are based on 

measurement accuracy estimates. 
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2.2. Electromagnetic Field Quantization 

This work utilizes a quantum model of the electromagnetic field which is obtained by a 

different procedure than the one commonly used in quantum optics. In this model, the number 

operator represents the number of energy flux (intensity) quanta in a field mode instead of 

energy quanta. The motivation behind this is that the energy flux is the conserved physical 

quantity in optical processes according to Poynting theorem. This fact holds quantum 

mechanically as well, and in particular, at the source of the system, the quantity that is 

converted from the pump field to the signal and idler fields is a quantum of energy flux. In 

addition, the energy flux is what is measured in practice, and this model is also justified 

experimentally and has been used by parts of the quantum optics community for years, 

including our group [22,26,27,33]. Another justification is that it allows to find equations 

similar to the Heisenberg equation for the ladder operators, in which a position derivative 

appears instead of the time derivative, but position and time are related through the speed of 

light, 𝑐. Overall, it has become significantly more probable that this model describes reality 

better than the alternatives. 

Also, while it is common to neglect the spatial dependence of the ladder operators in 

quantum optics, this work utilizes the general model in which the spatial dependence is 

included. This allows to calculate the full spatiotemporal dependence of the physical quantities 

of interest. 

The quantization of the electromagnetic field is achieved by the following procedure. 

The classical electric field modes of a physical system of interest are specified. Then, an 

operator is defined to represent the field dynamical variable from the classical physical 

quantity. Finally, the operator is expressed via ladder operators and the corresponding bosonic 

commutation relations are set. The ladder operators are defined based on the electric field, 

instead of the commonly used vector potential, by comparing the number operator to the 

intensity of a field mode. This causes the ladder operators to have the physical meaning of 

creating or destroying one quantum of energy flux, instead of a quantum of energy, and the 

resulting discretized physical quantity becomes the energy flux. 

In this work, the quantization procedure is performed for the following general classical 

electric field modes, which are expected on physical grounds. The modes are monochromatic 

plane waves with varying amplitudes and a continuous frequency range: 

 �⃗� (𝑥, 𝑦, 𝑧, 𝑡) = 𝐸(𝑥, 𝑦, 𝑧, 𝑡)𝑒𝑖(�⃗� ⋅𝑟 −𝜔𝑡)�̂� + 𝑐. 𝑐., (2.2.1) 
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where 𝐸 is the complex amplitude of the monochromatic plane wave, �⃗�  is its wavevector, 𝜔 is 

its angular frequency, and �̂� is its polarization. 

Looking at the intensity of the field and comparing it to the intensity operator allows to 

find the relation between the electric field and the ladder operators. The intensity of a field 

mode is: 

 
𝐼 =

𝐸𝐸∗

2𝜂
𝑐𝑜𝑠(𝜃), (2.2.2) 

where 𝜂 is the impedance of the wave and 𝜃 its propagation angle, which effects the intensity. 

Comparing this expression to the intensity in terms of the number operator: 

 𝐼 = ℏ𝜔�̂�†�̂�, (2.2.3) 

leads to the following substitution: 

 
𝐸𝑗  → (

2𝜂𝑗ℏ𝜔𝑗

𝑐𝑜𝑠(𝜃𝑗)
)

0.5

�̂�𝑗 . (2.2.4) 

It is immediately noticeable that the ladder operators are not unitless in this framework. 

The physical meaning of the operators �̂�𝑗 and �̂�𝑗
†
 when they act on the vacuum state is of 

destroying or creating a quantum of energy flux in a mode 𝑗, respectively, and they possess the 

following units: 

 
[�̂�𝑗] =

1

𝑚 ⋅ 𝑠0.5
. (2.2.5) 

The number operator, �̂�𝑗
†�̂�𝑗, has the meaning of representing the measurement of the number 

of detected quanta of energy flux in mode 𝑗. Its units are of flux: 

 
[�̂�𝑗
†�̂�𝑗] =

1

𝑚2 ⋅ 𝑠
. (2.2.6) 

Additionally, similar to the field amplitudes, the ladder operators depend on space and time, or 

the corresponding frequency domain variables. For an example, the notation �̂�𝑗(𝑘𝑥, 𝑘𝑦, 𝑘𝑧 , 𝜔) 

denotes a destruction operator of a quantum of flux in mode (𝑘𝑥, 𝑘𝑦, 𝑘𝑧 , 𝜔), with 𝑗 further 

specifying the field mode. 

To relate the real and frequency domains, the following definition of the Fourier 

transform is used: 

 
𝐹(𝑧, 𝑞 , 𝜔) =

1

(2𝜋)3
∫ ∫ 𝑓(𝑧, 𝑟 , 𝑡)𝑒𝑖�⃗� ⋅𝑟 𝑒−𝑖𝜔𝑡𝑑𝑟 𝑑𝑡

∞

−∞

∞

−∞

, 

𝑓(𝑧, 𝑟 , 𝑡) = ∫ ∫ 𝐹(𝑧, 𝑞 , 𝜔)𝑒−𝑖�⃗� ⋅𝑟 𝑒𝑖𝜔𝑡𝑑𝑞 𝑑𝜔
∞

−∞

∞

−∞

, 

(2.2.7) 

where 𝑟 ≡ (𝑥, 𝑦) and 𝑞 ≡ (𝑘𝑥, 𝑘𝑦). 
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Thus, for the ladder operators: 

 
�̂�𝑗(𝑧, 𝑞 , 𝜔) =

1

(2𝜋)3
∫ ∫ �̂�𝑗(𝑧, 𝑟 , 𝑡)𝑒

𝑖(�⃗� ⋅𝑟 −𝜔𝑡)𝑑𝑟 𝑑𝑡
∞

−∞

∞

−∞

, 

�̂�𝑗(𝑧, 𝑟 , 𝑡) = ∫ ∫ �̂�𝑗(𝑧, 𝑞 , 𝜔)𝑒
−𝑖(�⃗� ⋅𝑟 −𝜔𝑡)𝑑𝑞 𝑑𝜔

∞

−∞

∞

−∞

. 

(2.2.8) 

Throughout the work, the Fourier transforms are only performed on the time domain variables 

𝑥, 𝑦 and 𝑡, which transform to 𝑘𝑥, 𝑘𝑦 and 𝜔, respectively. That is because the 𝑧 axis acts as the 

optical axis and no momentum conservations are related to it in the analysis of the photon 

source of the system. I note that the following useful expressions for the Dirac delta function 

follow from the Fourier transform: 

 
𝛿(𝑟 ) = (

1

2𝜋
)
2

∫ 𝑒−𝑖�⃗� ⋅𝑟 𝑑𝑞 
∞

−∞

, 𝛿(𝑡) =
1

2𝜋
∫ 𝑒𝑖𝜔𝑡
∞

−∞

𝑑𝜔. (2.2.9) 

The commutation relations between the ladder operators in the frequency domain are set 

to be [22]: 

 [�̂�𝑗(𝑧1, 𝑞 1, 𝜔1), �̂�𝑘
†(𝑧2, 𝑞 2, 𝜔2)] 

=
1

(2𝜋)3
𝛿𝑗,𝑘𝛿(𝑧1 − 𝑧2)𝛿(𝑞 1 − 𝑞 2)𝛿(𝜔1 − 𝜔2). 

(2.2.10) 

The corresponding commutation relations in the time domain are: 

 [�̂�𝑗(𝑧1, 𝑟 1, 𝑡1), �̂�𝑘
†(𝑧2, 𝑟 2, 𝑡2)] = 𝛿𝑗,𝑘𝛿(𝑧1 − 𝑧2)𝛿(𝑟 1 − 𝑟 2)𝛿(𝑡1 − 𝑡2). (2.2.11) 

To describe how the wave functions and the operators change throughout an optical 

system, the Heisenberg picture is used. In this picture, the operators are considered to evolve 

along the system, while the wave function remains unchanged. Thus, when calculating 

expectation values at a location of interest, the operators are plugged in after their propagation 

to the location along with the wave function at the input of the system. A useful result derived 

from the above is the vacuum expectation values of frequency domain operators at the same 𝑧: 

 
⟨0|�̂�𝑗(𝑞 1, 𝜔1)�̂�𝑘

†(𝑞 2, 𝜔2)|0⟩ =
1

(2𝜋)3
𝛿𝑗,𝑘𝛿(𝑞 1 − 𝑞 2)𝛿(𝜔1 − 𝜔2), 

⟨0|�̂�𝑗
†(𝑞 1, 𝜔1)�̂�𝑘(𝑞 2, 𝜔2)|0⟩ = 0, 

⟨0|�̂�𝑗
†(𝑞 1, 𝜔1)�̂�𝑘

†(𝑞 2, 𝜔2)|0⟩ = 0, 

⟨0|�̂�𝑗(𝑞 1, 𝜔1)�̂�𝑘(𝑞 2, 𝜔2)|0⟩ = 0, 

(2.2.12) 

where 𝛿𝑗,𝑘 is the Kronecker delta. To use this to calculate expectation values at a desired point, 

the operators at that location must be expressed via the operators at the input of the system, so 

that they will have the same 𝑧 as the operators inside the expression of the wave function.  



10 

2.3. X-Ray Biphotons Sources 

Predominant sources used to generate indistinguishable photon pairs for experiments are 

the process of spontaneous parametric down-conversion (SPDC) [32], atomic cascades and 

quantum dots [8]. The latter is not available at x-ray wavelengths yet and will not be easy to 

control. SPDC is a second order nonlinear process in which a photon interacts with the vacuum 

field via a medium and is converted into two photons while energy and momentum are 

conserved [32]. X-ray SPDC was proposed by Freund and Levine in 1969 [40] and observed 

by a number of groups since 1971 [41], including ours [22,33]. 

Being a second order nonlinear process, SPDC involves two frequencies that combine to 

create a third frequency. It originates from the interactions between a pump photon at frequency 

𝜔𝑝 and the vacuum field fluctuations via a nonlinear medium. The interaction causes the pump 

photon to be converted into two photons, denoted as the “signal” and the “idler”, at lower 

frequencies 𝜔𝑠 and 𝜔𝑖, respectively. The process is parametric thus energy is conserved in the 

form: 

 ℏ𝜔𝑝 = ℏ𝜔𝑠 + ℏ𝜔𝑖. (2.3.1) 

To obtain an efficient process in nonlinear optics the energy should be transferred 

optimally from the pump to the desired generated fields. This can be done by maintaining the 

momentum conservation, a condition called “phase matching”: 

 �⃗� 𝑝 = �⃗� 𝑠 + �⃗� 𝑖 . (2.3.2) 

Here �⃗� 𝑝, �⃗� 𝑠, and �⃗� 𝑖 are the wave vectors of the pump, signal, and idler, respectively. To 

maintain the phase matching equation for a selected nonlinear process, specific refractive 

indices are used for the waves, through material choices. Since refractive indices for x-rays are 

near unity [38], it is not sufficient to use them for phase matching. Instead the reciprocal lattice 

vectors are used as proposed by Freund and Levine [40], which is possible since the wave 

vectors have the same order of magnitude. The phase matching equation becomes: 

 �⃗� 𝑝 + 𝐺 (ℎ𝑘𝑙) = �⃗� 𝑠 + �⃗� 𝑖, (2.3.3) 

where 𝐺 (ℎ𝑘𝑙) is the reciprocal lattice vector corresponding to the Miller indices ℎ, 𝑘, and 𝑙. 

In the x-ray region, the interactions with the medium can be described classically by 

using a free electron gas model for the electrons [40,41], which is justified since the energy of 

the photons is much greater than the ionization energy of the electrons. The equations of motion 

and continuity are: 

 𝜕𝑣 

𝜕𝑡
+ (𝑣 ⋅ ∇)𝑣 = −

𝑒

𝑚
(�⃗� + 𝑣 × �⃗� ), (2.3.4) 
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 𝜕𝜌

𝜕𝑡
+ ∇ ⋅ (𝜌𝑣 ) = 0, (2.3.5) 

where �⃗�  is the electric field, �⃗�  is the magnetic field, 𝑒 and 𝑚 are the electron charge and mass, 

respectively, 𝑣  is the velocity of the electron and 𝜌 is its charge density. The nonlinearity has 

contributions from three processes: the spatial variation of the velocity, the Lorentz Force and 

the spatial modulation of the charge density. 

By using the perturbation theory for the free electron gas model, the envelope of the 

nonlinear current density is found to be [29]: 

 
𝐽𝑠
𝑁𝐿 = −

𝑒2𝜌𝑔𝜔𝑠𝐸𝑝𝐸𝑖
∗

4𝑚2𝜔𝑝2𝜔𝑖
2𝜔𝑠2

 

× [𝜔𝑖𝜔𝑝(𝐺 ⋅ �̂�𝑠)(�̂�𝑝 ⋅ �̂�𝑖) − 𝜔𝑠𝜔𝑖(𝐺 ⋅ �̂�𝑝)(�̂�𝑖 ⋅ �̂�𝑠) + 𝜔𝑠𝜔𝑝(𝐺 ⋅ �̂�𝑖)(�̂�𝑝 ⋅ �̂�𝑠)]. 

(2.3.6) 

Here 𝐸𝑝 and 𝐸𝑖 are the amplitudes of the pump and idler, respectively, �̂�𝑝, �̂�𝑠, and �̂�𝑖 are the 

polarization unit vectors of the pump, signal, and idler, respectively, and 𝜌𝑔 is the Fourier 

component of the charge density for the corresponding reciprocal lattice vector. When the angle 

between the pump and the signal and idler is approximately straight, the second term in the 

nonlinear current density becomes the dominant term and the expression becomes: 

 
𝐽𝑠
𝑁𝐿 =

𝑒2𝜌𝑔𝐸𝑝𝐸𝑖
∗

4𝑚2𝜔𝑝2𝜔𝑖
(𝐺 ⋅ �̂�𝑝)(�̂�𝑖 ⋅ �̂�𝑠). (2.3.7) 

For the term to not nullify, we see that the pump polarization must be inside the scattering 

plane, since 𝐺  is in the scattering plane. 

By choosing a pump polarization inside the scattering plane and a nearly straight angle 

between the pump and both biphotons, as suggested by Borodin et al. in [33], the background 

noise caused by Bragg and Compton scattering is suppressed. This occurs since for photon 

energies above the electron binding energies, the cross section of these scattering processes is 

approximately the Thomson cross section, which approaches zero when viewed in the 

mentioned conditions. This choice requires the biphotons to be nearly parallel, and together 

with the choice of having identical biphoton frequencies, the solution of the phase matching 

condition is that the biphotons are very close to the Bragg angle. This poses no problem as 

Bragg scattering is suppressed, as mentioned. 

Another useful result is that when transmission (Laue) geometry is used, a relative 

improvement of over an order of magnitude in the SNR is achieved [22]. The overall setup of 

the nonlinear crystal under the mentioned conditions can be seen in Fig. 3, where the 𝑧 axis is 

set in the direction parallel to the lattice planes. 
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FIG. 3. (a) Schematic diagram of the nonlinear crystal in transmission geometry. �⃗� 𝑝, �⃗� 𝑠, and 

�⃗� 𝑖 are the wave vectors of the pump, signal, and idler, respectively, 𝐺 (ℎ𝑘𝑙) is the reciprocal 

lattice vector corresponding to the Miller indices ℎ, 𝑘, and 𝑙, which is orthogonal to the lattice 

planes represented by the dashed lines. The polarization unit vector of the pump, �̂�𝑝, is inside 

the scattering plane, and the angle between the pump and the generated biphotons is 

approximately straight. (b) The phase matching scheme. 

 

The radiation propagating through the nonlinear crystal is described classically by 

Maxwell's equations and a wave equation is required for each of the pump, signal and idler 

frequencies. Each equation is Fourier transformed from (𝑧, 𝑥, 𝑦, 𝑡) to (𝑧, 𝑘𝑥 , 𝑘𝑦, 𝜔), and the 

source term of these inhomogeneous equations, representing the nonlinearity, is the previously 

found nonlinear current density. 

Since SPDC is a very inefficient process, the “undepleted pump approximation” is 

assumed, which states that the pump field remains constant and removes the need in the pump 

equation. Losses are inherent to x-ray wavelengths, but the loss terms were neglected on 

account of the materials being shorter than the absorption length for the parameters in this 

work. The “slowly varying envelope approximation” is also assumed, which applies when the 

envelope of a wave varies slowly in time and space compared to the wavelength and allows 

neglecting successive derivatives. For example: 

 
|
𝜕2𝐸

𝜕𝑥2
| ≪ |𝑘𝑥

𝜕𝐸

𝜕𝑥
| , |

𝜕2𝐸

𝜕𝑧2
| ≪ |𝑘𝑧

𝜕𝐸

𝜕𝑧
| , |

𝜕𝐽

𝜕𝑡
| ≪ |𝜔𝐽|. (2.3.8) 

Next, the wave equations are quantized to obtain a quantum description in the Heisenberg 

picture, by substituting the field envelope with a ladder operator. Their commutation relations 

in the frequency domain are given by [22]: 

 [�̂�𝑗(𝑧1, 𝑞 1, 𝜔1), �̂�𝑘
†(𝑧2, 𝑞 2, 𝜔2)] (2.3.9) 

�⃗� 𝑝 

�⃗� 𝑠 

�⃗� 𝑖 

𝐺 (ℎ𝑘𝑙) 

Z 

X 

�̂�𝑝 

�⃗� 𝑝 

𝐺 (ℎ𝑘𝑙) 
�⃗� 𝑠 

�⃗� 𝑖 

(𝒂) (𝒃) 
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=
1

(2𝜋)3
𝛿𝑗,𝑘𝛿(𝑧1 − 𝑧2) ⋅ 𝛿(𝑞 1 − 𝑞 2)𝛿(𝜔1 − 𝜔2), 

with 𝑞 ≡ (𝑘𝑥, 𝑘𝑦), and the relation between the real and frequency domain ladder operators is: 

 
�̂�𝑗(𝑧, 𝑟 , 𝑡) = ∫ ∫ �̂�𝑗(𝑧, 𝑞 , 𝜔)𝑒

−𝑖(�⃗� ⋅𝑟 −𝜔𝑡)𝑑𝑞 𝑑𝜔
∞

−∞

∞

−∞

. (2.3.10) 

Consequently, the generation of the biphotons in the nonlinear crystal is described by the 

following frequency domain coupled equations for the signal and idler envelope ladder 

operators in the Heisenberg picture for a lossless medium [22,33]: 

 

{
 

 
𝜕�̂�𝑠
𝜕𝑧

= 𝜅�̂�𝑖
†𝑒𝑖Δ𝑘𝑧𝑧

𝜕�̂�𝑖
†

𝜕𝑧
= 𝜅∗�̂�𝑠𝑒

−𝑖Δ𝑘𝑧𝑧

. (2.3.11) 

Here 𝜅 is a coupling coefficient and Δ𝑘𝑧 is the phase mismatch in the 𝑧 direction: Δ𝑘𝑧 =

𝑘𝑝 cos(𝜃𝑝) − 𝑘𝑠 cos(𝜃𝑠) − 𝑘𝑖 cos(𝜃𝑖). 𝜃𝑝, 𝜃𝑠, and 𝜃𝑖 are the angles between the lattice plane 

and the wave vector of the pump, signal, and idler, respectively. 
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2.4. X-Ray Interferometry 

X-rays are challenging to manipulate, as their refractive indices are roughly equal to 

one [38], which causes them to stay in nearly the same direction when they enter media. The 

refractive indices are commonly notated as: 

 𝑛(𝜔) = 1 − 𝛿(𝜔) + 𝑖𝛽(𝜔), (2.4.1) 

with 𝛿, 𝛽 ≪ 1. The absorption length in this regime in terms of the above quantities is given 

by: 

 
𝑙𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 =

𝜆

4𝜋𝛽
. (2.4.2) 

This quantity can achieve relatively small values, for example 150 m for silicon at a photon 

energy of 10.5 keV, which also poses a challenge and must be considered when designing 

optical devices. 

Interferometry between the x-ray photon pairs can be performed with different setups 

and types of devices, where the three commonly used mechanisms are total external reflection, 

Bragg devices made of single crystals and multilayer devices [38,39]. 

Since their refractive index is smaller than one, when x-rays are incident on materials 

from the vacuum, they experience total external reflection at incidence angles below a critical 

angle: 

 𝜃𝑐 = √2𝛿, (2.4.3) 

where the angle is measured from the interface. Unfortunately, these angles are very small, for 

example 0.17 degrees for silicon at a photon energy of 10.5 keV. This limits greatly the required 

angels of the generated biphotons and the entrance angles of the other devices, which are not 

always available, making the mechanism less useful for our goal relative to the other two. 

Bragg devices are based on the ability to utilize Bragg diffraction in this regime. Their 

downside is their relatively narrow bandwidths, for an example of several eVs for silicon at the 

lowest allowed reflection, while the bandwidths of SPDC photons reach an order of magnitude 

of several keVs. This lowers the coincidence count rate and narrows the dip curve. An 

additional issue is the inability to design devices for every photon energy and direction 

combination easily, and usually at all. Especially, it is impossible to find scattering planes for 

very small angles such as the ones arising when working with nearly collinear biphotons. Both 

of these issues are overcome by using multilayers [38]. 

Multilayer devices are composed of alternating layers of two materials with different 

refractive indices, which are deposited on a substrate. Scattering occurs at the boundary 

between every two layers due to the variation in the density of the scatterers. To maximize the 
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variation, a material with a high atomic number and a material with a low atomic number are 

chosen. These are commonly referred to as the “absorber” and “spacer”, respectively, and their 

widths are indicated by 𝑑𝑎 and 𝑑𝑠. A ratio factor is defined as 𝛤 ≡ 𝑑𝑎/𝑑, with 𝑑 being the 

width of the bilayers. The refractive indices and material lengths can be tailored to achieve 

adjustable optical properties, such as a specific reflectivity and transmission for desired photon 

energies and incidence angles, creating nearly ideal 50:50 beam splitters and mirrors. A 

schematic diagram of a multilayer device can be seen in Fig. 4: 

 

 

FIG. 4. Schematic diagram of a multilayer device. 

The device is composed of alternating layers of a 

material with a high atomic number and a material 

with a low atomic number, denoted as the “absorber” 

and the “spacer”, respectively, which are deposited 

on a substrate. 𝜃 is the angle of incidence, and 𝑑𝑎 and 

𝑑𝑠 are the widths of the absorber and spacer layers, 

respectively. 

 

 

Radiation with wavelength 𝜆 can be diverted by the system by attaining constructive 

interference between the waves reflected from the bilayers. Similar to Bragg diffraction, 

constructive interference occurs when the phase difference acquired between consecutive 

bilayers is equal to an integer multiple of the wavelength [38]: 

 2𝑑 𝑠𝑖𝑛(𝜃) = 𝑚𝜆, (2.4.4) 

where 𝜃 is measured from the surface, and m is a positive integer. 

A more precise condition for constructive interference can be found by taking into 

account the refraction that occurs when the radiation propagates between the layers [39]: 

 

2𝑑 𝑠𝑖𝑛(𝜃)√1 − 2
𝛤𝛿𝑎 + (1 − 𝛤)𝛿𝑠

𝑠𝑖𝑛2(𝜃)
= 𝑚𝜆. (2.4.5) 

Here 1 − 𝛿𝑎 and 1 − 𝛿𝑠 are the real parts of the refractive indices of the absorber and the spacer, 

respectively. This formula can be used to find the necessary width of the bilayers for a specific 

wavelength and incidence angle. 

Substrate 

Spacer 

Absorber 

θ 

𝑑𝑎 

𝑑𝑠 
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By using the recursive theory of multilayers [42], an analytical expression for the 

intensity reflectivity of 𝑁 bilayers can be obtained, where the incident angle is equal to the 

Bragg angle and the refractions and the reflections from the substrate are negligible [39]: 

 𝑅 = 𝑡𝑎𝑛ℎ2[2𝑁𝑟𝑠𝑖𝑛(𝜋𝑚𝛤)]. (2.4.6) 

Here 𝑟 is the amplitude reflectivity of the interface between the absorber and the spacer. From 

this expression, the required number of bilayers for 100% and 50% reflectivity can be 

calculated, which allows creating an ideal mirror and beam splitter. Notice that the intensity 

reflectivity is maximal when 𝑚𝛤 is a semi-integer. Also, notice that this formula only provides 

the reflectivity for a specific wavelength at a specific angle, while SPDC photons contain many 

frequencies and angles. 

For given multilayer parameters, the reflectivity and the transmission of a device as a 

function of the photon frequency and incidence angle can be found by a numerical calculation, 

based on the multilayer matrix theory approach [43]. Every device is divided into a stack of 

adjacent subsystems, such as layers and boundaries, and every subsystem is described by a 

transfer matrix relating the complex wave amplitudes at both of its sides. The individual 

matrices are then multiplied to find the total transfer matrix of the entire stack. A quantum 

transfer matrix can be obtained from the classical one by means of the quantization procedure 

described earlier. 
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2.5. Photodetectors 

 Photons can be detected via the photoelectric effect, wherein photons incident on a 

material ionize its electrons if their energies are higher than the binding energies of the 

electrons. The released photoelectrons can then be amplified and detected. Due to the relatively 

high energies of x-ray photons, single photon counters have very low noise and high quantum 

efficiency, which is advantageous for quantum optics. 

In order to demonstrate the HOM effect, the detection of interest is the measurement of 

the coincidence count rate between the two output ports of the beam splitter. To calculate it 

analytically for a given optical system, it is useful to first calculate the second order correlation 

function. Then the second order correlation function can be integrated over the parameters of 

the detectors to obtain the rate. 

Following the photodetection theory of Glauber [44], the second order correlation 

function in the framework of this work is given by: 

 𝐺(2)(𝑟 1, 𝑡1, 𝑟 2, 𝑡2) = ⟨Ψ|�̂�𝑌
†(𝑟 2, 𝑡2)�̂�𝑋

†(𝑟 1, 𝑡1)�̂�𝑋(𝑟 1, 𝑡1)�̂�𝑌(𝑟 2, 𝑡2)|Ψ⟩. (2.5.1) 

Here the subscripts "𝑋" and "𝑌" denote two different detectors, which are positioned at the two 

different outputs of the final device in the system, 𝑟 = (𝑥, 𝑦), and the detectors are assumed to 

be at the same 𝑧, so the 𝑧-dependence is not written explicitly. It has the physical meaning of 

the flux of detecting one photon at detector 𝑋 at (𝑟 1, 𝑡1), while detecting one photon at detector 

𝑌 at (𝑟 2, 𝑡2). Its units are therefore the units of flux squared: 

 
[𝐺(2)(𝑟 1, 𝑡1, 𝑟 2, 𝑡2)] =

1

𝑚4 ⋅ 𝑠2
. (2.5.2) 

By integrating 𝐺(2) over the area of a detector and its detection window, the rate of 

detecting coincident photons at two detectors can be calculated. The coincidence count rate for 

two detectors is given by: 

 
𝑅𝐶 = 𝑆∫∫𝐺

(2)(𝑟 1, 𝑡1, 𝑟 2, 𝑡2)𝑑�⃗� 𝑑𝜏, (2.5.3) 

where 𝑆 is the area of the input beam on the source crystal which generates the two photons, 

�⃗� = 𝑟 2 − 𝑟 1 is the distance between the detection points, and 𝜏 = 𝑡2 − 𝑡1 is the duration 

between the detections. Its units are of rate: 

 
[𝑅𝐶] =

1

𝑠
. (2.5.4) 
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3. Procedures 

In this section I present the steps I have taken in order to design an optical system that 

demonstrates the HOM effect and to show that sub-attosecond delays and sub-Angstrom 

optical path differences can be measured with it. The steps can be divided into four stages: 

designing the system schematically, modeling the devices, calculating the coincidence count 

rate at the outputs of the source and of the entire system and simulating the devices and the 

entire system for example parameters using Mathematica. 

 

3.1. System Design 

In the first stage, I design the optical system schematically. This is done by selecting the 

optical devices comprising the system, while only considering their general function and 

disregarding their specific parameters, such as material compositions and widths. For example, 

I choose devices that produce biphotons with general desired properties, change their properties 

in a desired manner and detect them. 
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3.2. Device Modeling 

In the second stage, I first model the devices physically. This is done by selecting the 

classical physical entities which constitute each of the devices. For example, selecting the free 

electron gas model for the SPDC source. 

Next, I model the devices mathematically. This is done by selecting the mathematical 

description of each device which corresponds to its physical model, in the sense that the same 

physical entity can be described by different mathematical models. For example, writing the 

classical equations of motion of the electrons constituting the SPDC source. 

Next, I represent each device by a transfer relation, which is a relation between the 

physical quantities of interest at the outputs and at the inputs of the device. This is done by 

calculating the desired relations from the mathematical model. For example, I calculate the 

transfer matrix relating the complex field amplitudes at the two outputs of the beam splitter to 

the amplitudes at its two inputs. 

Finally, I represent each device by a quantum transfer relation, which is a relation 

between the ladder operators at the outputs and at the inputs of the devices. This is done by 

using the quantization procedure described earlier, which can be performed at different points 

during the steps for convenience. For example, I can first quantize the classical equations and 

then find the transfer matrix in terms of the ladder operators. Alternatively, I can take a transfer 

matrix that relates the complex amplitudes of the electric fields, which is obtained from the 

classical model, and consider it valid for the quantum case, since the ladder operators are 

proportional to the complex amplitudes. 
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3.3. Coincidence Count Rate Calculation 

In the third stage, I first calculate the ladder operators at the output of the SPDC source 

and express them in terms of the operators at its input. This is done by using the quantum 

transfer relation representing the device. It allows calculating expectation values of interest in 

the Heisenberg picture at the output of the system, and when all of the operators inside an 

expectation value are at the same 𝑧, the vacuum expectation values described by Eq. (2.2.12) 

can be used. 

Next, I calculate the second order correlation function at the output of the SPDC source 

in the Heisenberg picture. This is done by plugging the ladder operators at the output of the 

source along with the wave function at the input of the source into Eq. (2.5.1). I proceed to 

move between the real and frequency domains when needed by using Fourier transforms and 

then I simplify the expression analytically as much as possible. I do so by looking at the general 

term in the expectation value and finding which terms nullify, using the vacuum expectation 

values presented in Eq. (2.2.12), integrating the resulting expression while using the properties 

of the delta function and finally organizing the expression. 

Next, I calculate the coincidence count rate at the output of the SPDC source. This is 

done by plugging the second order correlation function into Eq. (2.5.3). I proceed to simplify 

the expression analytically as much as possible by integrating it and using the definition of the 

delta function. The resulting expression for the coincidence count rate depends on the 

parameters of the device. 

Next, I calculate the coincidence count rate at the output of the HOM system. This is 

done by repeating the steps taken to calculate the coincidence count rate at the output of the 

SPDC source. 

Finally, I calculate the expression for the probability amplitude in the wave function 

representation of the SPDC source. This is done be comparing two expressions for the 

coincidence count rate of a system containing only an SPDC source. The first expression is the 

rate that is found when considering the SPDC source alone, and the second is the rate that is 

found when considering the entire HOM system while removing all of the devices except the 

source, by appropriate substitutions. For example, the transfer matrix representing the beam 

splitter is replaced by a unit matrix. 
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3.4. Simulations 

In the last stage, I first specify an example system. This is done by selecting and 

calculating specific material parameters for the optical devices, which fit the design goals and 

reflect realistic device properties. For example, I find the width of the multilayer bilayers for 

the wavelength and incidence angle of the signal field at phase matching by using Eq. (2.4.5). 

To estimate the required number of bilayers for 100% and 50% reflectivity, thus creating an 

ideal mirror and beam splitter, I use Eq. (2.4.6). 

Next, I calculate the coincidence count rate numerically for the example system. This is 

done by plugging the specific parameters into the general expression of the coincidence count 

rate and integrating it numerically using Mathematica. 

Finally, I exhibit the HOM dip by plotting the coincidence count rate versus the delay 

between the biphotons. 
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4. Outcomes 

In this section I present the outcomes of my work, showing how I have successfully 

designed an optical system that exhibits the x-ray HOM effect and allows the measurement of 

sub-attosecond delays and sub-Angstrom optical path differences. I start by presenting the 

schematic design I chose for the optical system, then I present the models of the optical devices 

comprising it, then I present how I calculated the coincidence count rate at the output of the 

source and the HOM system, and finally I present the simulations I performed for an example 

system and the HOM dip resulting from the design choices. 

 

4.1. System Design 

I now present the schematic design I have chosen for the optical system, which 

demonstrates the HOM effect in the x-ray regime while dealing with the different design 

obstacles. 

When I chose the optical devices comprising the system, I had to overcome several main 

challenges. The source had to produce indistinguishable broadband x-ray photon pairs and have 

a suppressed background noise. In addition, to work in the x-ray regime, where the refractive 

index is approximately one and the absorption length can reach tens of nanometers, the 

interferometer had to be able to divert the photons and be narrower than the absorption length. 

Finally, the interferometer had to accommodate the wide bandwidth and angular distribution 

of the source, which was based on SPDC. 

The proposed optical system is comprised of a biphoton source, a phase shifter, two 

mirrors, a beam splitter and two detectors. The biphotons source is based on SPDC and 

generates indistinguishable photon pairs, one of which passes through a phase shifter, which 

creates a delay between the biphotons. The biphotons are then redirected by multilayer mirrors 

into a multilayer beam splitter, and finally they are detected by two photodetectors, found at 

the outputs of the beam splitter. The Bragg angles of the multilayer devices match the 

separation angle of the biphotons, so the setup forms a parallelogram shape which allows the 

biphotons to arrive simultaneously to the beam splitter when the delay is zero. This can be seen 

in Fig. 5: 
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FIG. 5. Schematic diagram of the proposed experimental system. The pump photons are down-

converted in a nonlinear crystal (NLC) into signal and idler photon pairs and the idler photon 

propagates through a phase shifter (PS). The biphotons are then reflected by their 

corresponding multilayer mirrors (Mi and Ms) into a beam splitter (BS) and the coincidence 

count rate at its output is measured by two detectors (D1 and D2). 
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4.2. Device Modeling 

I now describe how the optical devices composing the HOM system were modeled 

physically and mathematically. The model of the SPDC source is presented first, then the phase 

shifter, then the multilayer beam splitter and mirrors, and finally I present the model of the 

photodetectors. 

 

4.2.1. SPDC Source Model 

I physically modeled the nonlinear crystal which constitutes the SPDC using the free 

electron gas model. 

As shown earlier, the resulting mathematical model is a set of Heisenberg coupled 

equations for the signal and idler ladder operators in the frequency domain: 

 

{
 

 
𝜕�̂�𝑠
𝜕𝑧

= 𝜅�̂�𝑖
†𝑒𝑖Δ𝑘𝑧𝑧

𝜕�̂�𝑖
†

𝜕𝑧
= 𝜅∗�̂�𝑠𝑒

−𝑖Δ𝑘𝑧𝑧

. (4.2.1) 

Based on this model, I calculated two mathematical models of the source, for 

convenience in the analytical calculations. These models are related and are expressed one in 

terms of the other in section 4.3.5. The first representation is the transfer matrix representation, 

which relates the ladder operators at the input and output ports of the source by a matrix. It was 

used in the calculation of the coincidence count at its output. The second representation of the 

source is the wave function representation, which describes the output of the source by a 

superposition of the vacuum state and the biphoton state. It was used in the calculation of the 

coincidence count of the entire HOM system. 

I have denoted the general form of the transfer matrix by: 

 
(
�̂�𝑠(𝑞 𝑠, 𝜔𝑠)

�̂�𝑖
†(𝑞 𝑖, 𝜔𝑖)

) = (
𝐴(𝑞 𝑠, 𝜔𝑠) 𝐵(𝑞 𝑠, 𝜔𝑠)

𝐶(𝑞 𝑠, 𝜔𝑠) 𝐷(𝑞 𝑠, 𝜔𝑠)
) (
�̂�𝑠0(𝑞 𝑠, 𝜔𝑠)

�̂�𝑖0
† (𝑞 𝑖, 𝜔𝑖)

), (4.2.2) 

where �̂�𝑗0 and �̂�𝑗 the frequency domain ladder operators corresponding to mode 𝑗 before and 

after the device, respectively, and 𝐴, 𝐵, 𝐶 and 𝐷 are the coefficients relating the output to the 

input. Notice that the frequency dependencies of the operators of each of the fields are different 

and that the 𝑧-dependence is not written explicitly, since both of the input and output ports are 

at the same 𝑧. 

To calculate the transfer matrix from the coupled equations, I began by assuming the 

conversion rate of the pump photons to signal and idler biphotons is very low, and thus the 

change of the operators depending on space is small. That allowed me to set �̂�𝑠,𝑖 = �̂�𝑠,𝑖(0): 
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{
 

 
𝜕�̂�𝑠
𝜕𝑧

= 𝜅�̂�𝑖
†(0)𝑒𝑖Δ𝑘𝑧𝑧

𝜕�̂�𝑖
†

𝜕𝑧
= 𝜅∗�̂�𝑠(0)𝑒

−𝑖Δ𝑘𝑧𝑧

. (4.2.3) 

Integrating the coupled equations and plugging in the boundary conditions resulted in the 

following integration constants: 

 

{
 
 

 
 �̂�𝑠(𝑧) = 𝜅�̂�𝑖

†(0)
𝑒𝑖𝛥𝑘𝑧𝑧

𝑖𝛥𝑘𝑧
+ 𝐶𝑠, 𝐶𝑠 = �̂�𝑠(0) −

𝜅�̂�𝑖
†(0)

𝑖𝛥𝑘𝑧

�̂�𝑖
†(𝑧) = 𝜅∗�̂�𝑠(0)

𝑒−𝑖𝛥𝑘𝑧𝑧

−𝑖𝛥𝑘𝑧
+ 𝐶𝑖, 𝐶𝑖 = �̂�𝑖

†(0) +
𝜅∗�̂�𝑠(0)

𝑖𝛥𝑘𝑧

. (4.2.4) 

Performing some algebraic manipulations led to the following expressions: 

 

{
�̂�𝑠(𝑧) = �̂�𝑠(0) + 2𝜅𝑒

𝑖𝛥𝑘𝑧𝑧
2
𝑧

2
𝑠𝑖𝑛𝑐 (

𝛥𝑘𝑧𝑧

2
) �̂�𝑖

†(0)

�̂�𝑖
†(𝑧) = 2𝜅∗𝑒−

𝑖𝛥𝑘𝑧𝑧
2
𝑧

2
𝑠𝑖𝑛𝑐 (

𝛥𝑘𝑧𝑧

2
) �̂�𝑠(0) + �̂�𝑖

†(0)

, (4.2.5) 

where 𝑠𝑖𝑛𝑐(𝑥) = 𝑠𝑖𝑛(𝑥) /𝑥. 

I moved into a matrix form and plugged in 𝑧 = 𝐿 to acquire the transfer matrix: 

 

(
�̂�𝑠(𝑧)

�̂�𝑖
† (𝑧)

) = (
1 𝜅𝑧𝑒

𝑖𝛥𝑘𝑧𝑧
2 𝑠𝑖𝑛𝑐 (

𝛥𝑘𝑧𝑧

2
)

𝜅∗𝑧𝑒−
𝑖𝛥𝑘𝑧𝑧
2 𝑠𝑖𝑛𝑐 (

𝛥𝑘𝑧𝑧

2
) 1

)(
�̂�𝑠(0)

�̂�𝑖
† (0)

), (4.2.6) 

therefore: 

 

(
𝐴 𝐵
𝐶 𝐷

) ≡ (
1 𝜅𝐿𝑒

𝑖𝛥𝑘𝑧𝐿
2 𝑠𝑖𝑛𝑐 (

𝛥𝑘𝑧𝐿

2
)

𝜅∗𝐿𝑒−
𝑖𝛥𝑘𝑧𝐿
2 𝑠𝑖𝑛𝑐 (

𝛥𝑘𝑧𝐿

2
) 1

). (4.2.7) 

This result matches the expectation of a small deviation from the initial value, which is 

expected since: 𝜅 ≪ 1, which causes a small deviation from the initial value. 

Modeling the source with an output wave function was done by the following general 

expression, which contains a superposition of the vacuum state and the biphoton state: 

|Ψ⟩𝑆𝑜𝑢𝑟𝑐𝑒 = 𝐶|0⟩ + ∫𝑑𝑞 𝑠𝑑𝜔𝑠𝑑𝑞 𝑖𝑑𝜔𝑖𝑓(𝑞 𝑠, 𝜔𝑠, 𝑞 𝑖, 𝜔𝑖)�̂�𝑠
†(𝑞 𝑠, 𝜔𝑠)�̂�𝑖

†(𝑞 𝑖, 𝜔𝑖)|0⟩. (4.2.8) 

Here �̂�𝑗
†(𝑞 𝑗 , 𝜔𝑗) is the creation operator of photon 𝑗 in mode (𝑞 𝑗 , 𝜔𝑗) and the 𝑧-dependence is 

not written explicitly again. 𝐶 and 𝑓(𝑞 𝑠, 𝜔𝑠, 𝑞 𝑖, 𝜔𝑖) are the probability amplitudes to detect the 

vacuum state and the frequency domain biphoton state, respectively. |𝐶|2 and 

|𝑓(𝑞 𝑠, 𝜔𝑠, 𝑞 𝑖, 𝜔𝑖)|
2 are thus the probability to detect the vacuum state and the biphoton 
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probability density to detect a signal with the properties 𝑞 𝑠 and 𝜔𝑠 and an idler with 𝑞 𝑖 and 𝜔𝑖, 

respectively. As SPDC is very inefficient, |𝐶|2 ≫ ∫𝑑𝑞 𝑠𝑑𝜔𝑠𝑑𝑞 𝑖𝑑𝜔𝑖|𝑓(𝑞 𝑠, 𝜔𝑠, 𝑞 𝑖, 𝜔𝑖)|
2. 

 I have denoted the biphoton wave function by: 

 
|Ψ⟩𝐵𝑖𝑝ℎ𝑜𝑡𝑜𝑛𝑠 = ∫𝑑𝑞 𝑠𝑑𝜔𝑠𝑑𝑞 𝑖𝑑𝜔𝑖𝑓(𝑞 𝑠, 𝜔𝑠, 𝑞 𝑖, 𝜔𝑖)�̂�𝑠

†(𝑞 𝑠, 𝜔𝑠)�̂�𝑖
†(𝑞 𝑖, 𝜔𝑖)|0⟩. (4.2.9) 

As mentioned, the biphotons conserve energy: 

 ℏ𝜔𝑝 = ℏ𝜔𝑠 + ℏ𝜔𝑖, (4.2.10) 

and conserve momentum in the 𝑥 and 𝑦 directions: 

 𝑞 𝑝 + 𝐺 = 𝑞 𝑠 + 𝑞 𝑖. (4.2.11) 

These conservations were incorporated by writing:  

 𝑓(𝑞 𝑠, 𝜔𝑠, 𝑞 𝑖, 𝜔𝑖) = 𝜑(𝑞 𝑠, 𝜔𝑠)𝛿 (𝑞 𝑖 − (𝑞 𝑝 + 𝐺 − 𝑞 𝑠)) 𝛿 (𝜔𝑖 − (𝜔𝑝 − 𝜔𝑠)). (4.2.12) 

Plugging this expression into the state and integrating over the idler variables resulted in the 

following final form: 

|Ψ⟩𝐵𝑖𝑝ℎ𝑜𝑡𝑜𝑛𝑠 = 

∫𝑑𝑞 𝑑𝜔𝜑(𝑞 ,𝜔)�̂�𝑠
†(𝑘𝑥, 𝑘𝑦, 𝜔)�̂�𝑖

†(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)|0⟩. 
(4.2.13) 
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4.2.2. Phase Shifter Model 

I physically modeled the phase shifter as composed of a homogeneous isotropic linear 

lossless dielectric material. When such a material is placed in the path of the idler photon, the 

optical paths of the signal and the idler are no longer equal, and thus a delay is introduced 

between the biphotons. 

Delaying a wave is described classically by the addition of an appropriate phase to it. 

Therefore, I represented the phase shifter mathematically using the following transformation, 

which is the common approach [32]: 

 �̂�𝑖
†(𝑘𝑥, 𝑘𝑦, 𝜔) → �̂�𝑖𝑇

† (𝑘𝑥, 𝑘𝑦, 𝜔)𝑒
−𝑖𝜔𝑇 . (4.2.14) 

Here �̂�𝑖
†
 and �̂�𝑖𝑇

†
 are the frequency domain idler creation operators before and after the device, 

respectively, and 𝑇 is the duration of the delay between the biphotons. 
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4.2.3. Multilayer Optical Devices Model 

I physically modeled the multilayer mirrors and the multilayer beam splitter as composed 

of homogeneous isotropic linear lossless dielectric layers. 

For their mathematical representation, I used a transfer matrix that relates their input and 

output ladder operators. To find it, I first used the multilayer matrix theory [43] to calculate 

their classical transfer matrices, which relate the complex field amplitudes at their inputs and 

outputs, and then I used the aforementioned quantization procedure to obtain the quantum 

transfer matrix. 

To find the classical transfer matrix of a device, I divided it into a stack of adjacent 

subsystems, such as layers and boundaries, and described every subsystem by its own transfer 

matrix. The multilayer devices comprise of 𝑁 spacer-absorber bilayers which are deposited on 

a substrate. Therefore, the subsystems were as follows: The environment in which the 

multilayer is found, the boundary between the environment and the top-most absorber layer, 

the absorber layer, the boundary between the absorber and the spacer underneath it, the spacer 

layer, the boundary between the spacer and the absorber underneath it, the boundary between 

the lowest spacer and the substrate, the substrate layer, the boundary between the substrate and 

the environment underneath it, and finally the bottom environment. 

The propagation of radiation through a homogeneous layer causes a phase shift, and was 

described by: 

 
(𝑒
𝑖𝑛𝑘𝑑𝑐𝑜𝑠(𝜃) 0
0 𝑒𝑖𝑛𝑘𝑑𝑐𝑜𝑠(𝜃)

), (4.2.15) 

where 𝑛 is the refractive index, 𝑘 is the wave number, 𝑑 is the width of the layer, and 𝜃 is the 

propagation angle, measured from the optical axis. 

The passage of the radiation through a boundary between two media was described using 

Fresnel’s laws. For S polarization I used: 

1

𝑛1 𝑐𝑜𝑠(𝜃1) + 𝑛2 𝑐𝑜𝑠(𝜃2)
(

2𝑛1 𝑐𝑜𝑠(𝜃1) 𝑛2 𝑐𝑜𝑠(𝜃2) − 𝑛1 𝑐𝑜𝑠(𝜃1)

𝑛1 𝑐𝑜𝑠(𝜃1) − 𝑛2 𝑐𝑜𝑠(𝜃2) 2𝑛2 𝑐𝑜𝑠(𝜃2)
), (4.2.16) 

where 𝑛1 and 𝑛2 are the refractive indices of the top and the bottom material, respectively, and 

𝜃1 and 𝜃2 are the radiation propagation angles relative to the optical axis, respectively, which 

are related by Snell’s law. 

I used Mathematica to multiply the transfer matrices of all the subsystems according to 

the multilayer matrix theory, and the resulting transfer relation is presented here in symbolic 

shorthand notation. Upon calculating the total classical transfer matrix, the quantum transfer 
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matrix was readily given by the same expression, since in the quantization procedure the field 

amplitudes are proportional to the ladder operators. 

The transfer relation representing the mirrors using their amplitude reflectivity was 

denoted as follows: 

 
{
�̂�1(𝑘𝑥, 𝑘𝑦, 𝜔) = 𝑀𝑖(−𝑘𝑥, 𝑘𝑦, 𝜔)�̂�𝑖𝑇(−𝑘𝑥, 𝑘𝑦, 𝜔)

�̂�2(−𝑘𝑥, 𝑘𝑦, 𝜔) = 𝑀𝑠(𝑘𝑥, 𝑘𝑦, 𝜔)�̂�𝑠𝑇(𝑘𝑥, 𝑘𝑦, 𝜔)
, (4.2.17) 

where �̂�2 and �̂�1 are the frequency domain destruction operators at the output of the signal and 

idler mirror, respectively, �̂�𝑠𝑇 and �̂�𝑖𝑇 are the destruction operators of the signal and the idler 

at the entrance of the mirrors, respectively, 𝑀𝑠 and 𝑀𝑖 are the amplitude reflectivity of the 

signal and idler mirrors, respectively. The directions of the wavevector components express 

the flipping of the 𝑥 component of the wavevector by the mirrors. 

The beam splitter was represented via a transfer matrix relating the frequency domain 

destruction operators at its input and output ports, which was denoted by: 

(
�̂�3(−𝑘𝑥, 𝑘𝑦, 𝜔)

�̂�4(𝑘𝑥, 𝑘𝑦, 𝜔)
) = (

𝐸(𝑘𝑥, 𝑘𝑦, 𝜔) 𝐹(−𝑘𝑥, 𝑘𝑦, 𝜔)

𝐺(𝑘𝑥, 𝑘𝑦, 𝜔) 𝐻(−𝑘𝑥, 𝑘𝑦, 𝜔)
) (

�̂�1(𝑘𝑥, 𝑘𝑦, 𝜔)

�̂�2(−𝑘𝑥, 𝑘𝑦, 𝜔)
). (4.2.18) 

Here �̂�3 and �̂�4 are the frequency domain destruction operators at the output ports of the beam 

splitter, �̂�1 and �̂�2 are the destruction operators at the input ports of the beam splitter, and 𝐸, 

𝐹, 𝐺 and 𝐻 are the amplitude reflectivity and transmission coefficients relating the output to 

the input. 
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4.2.4. Photodetectors Model 

I physically modeled the two photodetectors as having a rectangular shape, having a 

detection time window with an order of magnitude of 100 ns, and being able to detect x-ray 

photons with an ideal detection efficiency. 

I modeled them mathematically by the previously mentioned coincidence count rate 

formula, which describes the result of their interaction with x-ray biphotons in a coincidence 

measurement: 

 
𝑅𝐶 = 𝑆∫∫𝐺

(2)(𝑟 1, 𝑡1, 𝑟 2, 𝑡2)𝑑�⃗� 𝑑𝜏. (4.2.19) 
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4.3. Coincidence Count Rate Calculation 

I now present the analytical calculations of the coincidence count rates at the output of 

the SPDC source and of the entire HOM system. In the calculations, the most general 

mathematical representations of the optical devices were used, in order to acquire a symbolic 

expression for the rate in terms of the parameters representing the devices. 

To perform the calculation for a given system, I first found the ladder operators at its 

output expressed by the operators at its input, in order to work in the Heisenberg picture. Then 

I calculated the second order correlation function, and finally I integrated the correlation 

function over the parameters of a detector positioned at the output of the system, to obtain the 

coincidence count rate. 

 

4.3.1. SPDC Source Coincidence Count Rate 

I began with the calculation of the coincidence count rate at the output of the SPDC 

source. This expands upon previous similar calculations by the use of the aforementioned 

quantization formalism and the inclusion of the spatial dependence of the ladder operators. The 

result is used in section 4.3.5. to find the probability amplitude of the wave function 

representation of the source, which is used in turn to find the coincidence count rate of the 

entire HOM system. 

To calculate the coincidence count rate, the second order correlation function was found 

first: 

 𝐺(2)(𝑟 1, 𝑡1, 𝑟 2, 𝑡2) = ⟨Ψ|�̂�𝑌
†(𝑟 2, 𝑡2)�̂�𝑋

†(𝑟 1, 𝑡1)�̂�𝑋(𝑟 1, 𝑡1)�̂�𝑌(𝑟 2, 𝑡2)|Ψ⟩. (4.3.1) 

Plugging in the wave function at the input of the source, where the signal and idler fields are 

at the vacuum state, and using the Fourier transforms of the time domain ladder operators, led 

to: 

 
𝐺(2) = ∫𝑑𝑞 1𝑑𝑞 2𝑑𝑞 3𝑑𝑞 4𝑑𝜔1𝑑𝜔2𝑑𝜔3𝑑𝜔4 

× 𝑒𝑖(�⃗� 1−�⃗� 4)⋅𝑟 2𝑒−𝑖(𝜔1−𝜔4)𝑡2𝑒𝑖(�⃗� 2−�⃗� 3)⋅𝑟 1𝑒−𝑖(𝜔2−𝜔3)𝑡1 

× ⟨0|�̂�𝑖
†(𝑞 1, 𝜔1)�̂�𝑠

†(𝑞 2, 𝜔2)�̂�𝑠(𝑞 3, 𝜔3)�̂�𝑖(𝑞 4, 𝜔4)|0⟩. 

(4.3.2) 

To calculate the expectation value at the entrance of the system, by having all of the 

operators at the same 𝑧, I plugged in the expression of the SPDC output ladder operators in 

terms of the input operators, which are given by the transfer matrix representation of the SPDC 

source: 



32 

 
𝐺(2) = ∫𝑑𝑞 1𝑑𝜔1𝑑𝑞 2𝑑𝜔2𝑑𝑞 3𝑑𝜔3𝑑𝑞 4𝑑𝜔4 

× 𝑒𝑖[(�⃗� 1−�⃗� 4)⋅𝑟 2−(�⃗� 3−�⃗� 2)⋅𝑟 1]𝑒−𝑖[(𝜔1−𝜔4)𝑡2−(𝜔3−𝜔2)𝑡1] 

× ⟨0| [𝐶 (�⃗⃗� 𝑝 + �⃗⃗�
 − �⃗⃗� 1, 𝜔𝑝 −𝜔1) �̂�𝑠0 (�⃗⃗� 𝑝 + �⃗⃗�

 − �⃗⃗� 1, 𝜔𝑝 −𝜔1) 

+𝐷(𝑞 𝑝 + 𝐺 − 𝑞 1, 𝜔𝑝 − 𝜔1)�̂�𝑖0
† (𝑞 1, 𝜔1)] 

× [𝐴∗(𝑞 2, 𝜔2)�̂�𝑠0
† (𝑞 2, 𝜔2) + 𝐵

∗(𝑞 2, 𝜔2)�̂�𝑖0(𝑞 𝑝 + 𝐺 − 𝑞 2, 𝜔𝑝 − 𝜔2)] 

× [𝐴(𝑞 3, 𝜔3)�̂�𝑠0(𝑞 3, 𝜔3) + 𝐵(𝑞 3, 𝜔3)�̂�𝑖0
† (𝑞 𝑝 + 𝐺 − 𝑞 3, 𝜔𝑝 − 𝜔3)] 

× [𝐶∗(𝑞 𝑝 + 𝐺 − 𝑞 4, 𝜔𝑝 − 𝜔4)�̂�𝑠0
† (𝑞 𝑝 + 𝐺 − 𝑞 4, 𝜔𝑝 − 𝜔4) 

+𝐷∗(𝑞 𝑝 + 𝐺 − 𝑞 4, 𝜔𝑝 − 𝜔4)�̂�𝑖0(𝑞 4, 𝜔4)]|0⟩. 

(4.3.3) 

The next step was calculating the vacuum expectation value, by finding which of its 16 

terms do not nullify. The general form of the terms without the coefficients and the frequency 

dependencies is: 

 ⟨0|(�̂�𝑠0 𝑜𝑟 �̂�𝑖0
† )(�̂�𝑠0

†  𝑜𝑟 �̂�𝑖0)(�̂�𝑠0 𝑜𝑟 �̂�𝑖0
† )(�̂�𝑠0

†  𝑜𝑟 �̂�𝑖0)|0⟩. (4.3.4) 

Only two terms remained in the expectation value, those with the form ⟨0|�̂�𝑠0�̂�𝑖0�̂�𝑖0
† �̂�𝑠0

† |0⟩ and 

⟨0|�̂�𝑠0�̂�𝑠0
† �̂�𝑠0�̂�𝑠0

† |0⟩. 

Plugging the expectation value back into 𝐺(2) with the coefficients and the frequency 

dependencies, and then performing the vacuum expectation values, led to: 

 
𝐺(2) = ∫𝑑𝑞 1𝑑𝜔1𝑑𝑞 2𝑑𝜔2𝑑𝑞 3𝑑𝜔3𝑑𝑞 4𝑑𝜔4 

× 𝑒𝑖[(�⃗� 1−�⃗� 4)⋅𝑟 2−(�⃗� 3−�⃗� 2)⋅𝑟 1]𝑒−𝑖[(𝜔1−𝜔4)𝑡2−(𝜔3−𝜔2)𝑡1] 

× [𝐶(𝑞 𝑝 + 𝐺 − 𝑞 1, 𝜔𝑝 − 𝜔1)𝐵
∗(𝑞 2, 𝜔2) 

× 𝐵(𝑞 3, 𝜔3)𝐶
∗(𝑞 𝑝 + 𝐺 − 𝑞 4, 𝜔𝑝 − 𝜔4) 

×
1

(2𝜋)3
𝛿𝑠0,𝑠0𝛿 ((𝑞 𝑝 + 𝐺 − 𝑞 1) − (𝑞 𝑝 + 𝐺 − 𝑞 4)) 

× 𝛿 ((𝜔𝑝 − 𝜔1) − (𝜔𝑝 − 𝜔4)) 

×
1

(2𝜋)3
𝛿𝑖0,𝑖0𝛿 ((𝑞 𝑝 + 𝐺 − 𝑞 2) − (𝑞 𝑝 + 𝐺 − 𝑞 3)) 

× 𝛿 ((𝜔𝑝 − 𝜔2) − (𝜔𝑝 − 𝜔3)) 

+𝐶(𝑞 𝑝 + 𝐺 − 𝑞 1, 𝜔𝑝 − 𝜔1)𝐴
∗(𝑞 2, 𝜔2) 

× 𝐴(𝑞 3, 𝜔3)𝐶
∗(𝑞 𝑝 + 𝐺 − 𝑞 4, 𝜔𝑝 − 𝜔4) 

(4.3.5) 



33 

×
1

(2𝜋)3
𝛿𝑠0,𝑠0𝛿 (𝑞 3 − (𝑞 𝑝 + 𝐺 − 𝑞 4)) 𝛿 (𝜔3 − (𝜔𝑝 − 𝜔4)) 

×
1

(2𝜋)3
𝛿𝑠0,𝑠0𝛿 ((𝑞 𝑝 + 𝐺 − 𝑞 1) − 𝑞 2) 𝛿 ((𝜔𝑝 − 𝜔1) − 𝜔2)]. 

I integrated over 𝑑𝑞 3𝑑𝜔3𝑑𝑞 4𝑑𝜔4 in the first term and over 𝑑𝑞 2𝑑𝜔2𝑑𝑞 4𝑑𝜔4 in the 

second term, and used the properties of the delta function to finally arrive to the following 

expression: 

𝐺(2) =
1

(2𝜋)6
∫𝑑𝑞 1𝑑𝜔1𝑑𝑞 2𝑑𝜔2|𝐵(𝑞 2, 𝜔2)|

2|𝐶(𝑞 𝑝 + 𝐺 − 𝑞 1, 𝜔𝑝 − 𝜔1)|
2
 

+
1

(2𝜋)6
∫𝑑𝑞 1𝑑𝜔1𝑑𝑞 3𝑑𝜔3𝑒

𝑖(�⃗� 1+�⃗� 3−�⃗� 𝑝−𝐺 )⋅(𝑟 2−𝑟 1)𝑒−𝑖(𝜔1+𝜔3−𝜔𝑝)(𝑡2−𝑡1) 

× 𝐴∗(𝑞 𝑝 + 𝐺 − 𝑞 1, 𝜔𝑝 − 𝜔1)𝐴(𝑞 3, 𝜔3)𝐶(𝑞 𝑝 + 𝐺 − 𝑞 1, 𝜔𝑝 − 𝜔1)𝐶
∗(𝑞 3, 𝜔3). 

(4.3.6) 

Next, I turned to calculating the coincidence count rate, given by: 

 
𝑅𝐶(𝑟 1, 𝑡1, 𝑟 2, 𝑡2) = 𝑆∫∫𝐺

(2)(𝑟 1, 𝑡1, 𝑟 2, 𝑡2)𝑑�⃗� 𝑑𝜏. (4.3.7) 

Two terms exist. The term that does not depend on �⃗�  and 𝜏 is called the classical term, and it 

originates from accidental detection of signal and idler photons that arrive to the detectors 

during the detection time window. I assumed the classical term is negligible since the detection 

window is short enough. The rate caused by the other term, called the quantum term, is: 

 
𝑅𝐶,𝑄𝑢𝑎𝑛𝑡𝑢𝑚 = 𝑆

1

(2𝜋)6
∫𝑑�⃗� 𝑑𝜏𝑑𝑞 1𝑑𝜔1𝑑𝑞 3𝑑𝜔3 

× 𝑒𝑖(�⃗� 1+�⃗� 3−�⃗� 𝑝−𝐺
 )⋅(𝑟 2−𝑟 1)𝑒−𝑖(𝜔1+𝜔3−𝜔𝑝)(𝑡2−𝑡1) 

× 𝐴∗(𝑞 𝑝 + 𝐺 − 𝑞 1, 𝜔𝑝 − 𝜔1) 𝐴(𝑞 3, 𝜔3) 

× 𝐶(𝑞 𝑝 + 𝐺 − 𝑞 1, 𝜔𝑝 − 𝜔1)𝐶
∗(𝑞 3, 𝜔3). 

(4.3.8) 

I assumed the integration time of the detector is much longer than the biphoton 

correlation time, with an order of magnitude of 100 ns versus an order of magnitude of 1 as, 

thus the integration limits can be considered as infinite. Integrating over 𝑑�⃗� 𝑑𝜏 and using the 

definition of the delta function led to: 

 
𝑅𝐶,𝑄𝑢𝑎𝑛𝑡𝑢𝑚 =

𝑆

(2𝜋)6
∫𝑑𝑞 1𝑑𝜔1𝑑𝑞 3𝑑𝜔3 

× (2𝜋)2𝛿(𝑞 1 + 𝑞 3 − 𝑞 𝑝 − 𝐺 )2𝜋𝛿(𝜔1 + 𝜔3 − 𝜔𝑝) 

× 𝐴∗(𝑞 𝑝 + 𝐺 − 𝑞 1, 𝜔𝑝 − 𝜔1) 𝐴(𝑞 3, 𝜔3) 

× 𝐶(𝑞 𝑝 + 𝐺 − 𝑞 1, 𝜔𝑝 − 𝜔1)𝐶
∗(𝑞 3, 𝜔3). 

(4.3.9) 
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Finally, I integrated over 𝑑𝑞 3𝑑𝜔3, and after changing variables from 𝑞 𝑝 + 𝐺 − 𝑞 1 to 𝑞 1 

and from 𝜔𝑝 − 𝜔1 to 𝜔1 and removing the subscript notation “1”, the rate was found to be: 

 
𝑅𝐶,𝑄𝑢𝑎𝑛𝑡𝑢𝑚 =

𝑆

(2𝜋)3
∫𝑑𝑞 𝑑𝜔|𝐴(𝑞 , 𝜔)𝐶∗(𝑞 , 𝜔)|2. (4.3.10) 
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4.3.2. HOM System Output Ladder Operators 

I proceeded to calculate the coincidence count rate in the Heisenberg picture, using the 

wave function at the input of the system, and the operators at the output of the system, after 

their propagation through it. I started by expressing the output operators via the input operators, 

which allowed me to calculate expectation values easier later, by knowing all of the operators 

at the same 𝑧. 

Starting at the output of the system, the destruction operators in time domain after the 

beam splitter are: 

 
�̂�3(𝑟 , 𝑡) = ∫ �̂�3(𝑞 ,𝜔)𝑒

−𝑖(�⃗� ⋅𝑟 −𝜔𝑡)𝑑𝑞 𝑑𝜔, 

�̂�4(𝑟 `, 𝑡`) = ∫ �̂�4(𝑞 `, 𝜔`)𝑒
−𝑖(�⃗� `⋅𝑟 `−𝜔`𝑡`)𝑑𝑞 `𝑑𝜔`. 

(4.3.11) 

I moved into the frequency domain using the Fourier transform, since the transfer matrix 

representing the beam splitter is known in the frequency domain. 

Plugging in the transfer relations of the beam splitter, as denoted by Eq. (4.2.18), gave 

me the output operators expressed by the operators after the mirrors: 

 
�̂�3(𝑟 , 𝑡) = ∫[𝐸(−𝑘𝑥, 𝑘𝑦, 𝜔)�̂�1(−𝑘𝑥, 𝑘𝑦, 𝜔)

+ 𝐹(𝑘𝑥, 𝑘𝑦, 𝜔)�̂�2(𝑘𝑥, 𝑘𝑦, 𝜔)]𝑒
−𝑖(�⃗� ⋅𝑟 −𝜔𝑡)𝑑𝑞 𝑑𝜔, 

�̂�4(𝑟 `, 𝑡`) = ∫[𝐺(𝑘𝑥`, 𝑘𝑦`, 𝜔`)�̂�1(𝑘𝑥`, 𝑘𝑦`, 𝜔`)

+ 𝐻(−𝑘𝑥`, 𝑘𝑦`, 𝜔`)�̂�2(−𝑘𝑥`, 𝑘𝑦`, 𝜔`)]𝑒
−𝑖(�⃗� `⋅𝑟 `−𝜔`𝑡`)𝑑𝑞 `𝑑𝜔`. 

(4.3.12) 

Similarly, plugging in the input-output relations of the mirror, as denoted by Eq. (4.2.17), 

gave me the output operators expressed by the operators after the phase shifter: 

 �̂�3(𝑟 , 𝑡)

= ∫[𝐸(−𝑘𝑥, 𝑘𝑦, 𝜔)𝑀𝑖(𝑘𝑥, 𝑘𝑦, 𝜔)�̂�𝑖𝑇(𝑘𝑥 , 𝑘𝑦, 𝜔)

+ 𝐹(𝑘𝑥, 𝑘𝑦, 𝜔)𝑀𝑠(−𝑘𝑥, 𝑘𝑦, 𝜔)�̂�𝑠𝑇(−𝑘𝑥 , 𝑘𝑦, 𝜔)]𝑒
−𝑖(�⃗� ⋅𝑟 −𝜔𝑡)𝑑𝑞 𝑑𝜔, 

�̂�4(𝑟 `, 𝑡`)

= ∫[𝐺(𝑘𝑥`, 𝑘𝑦`, 𝜔`)𝑀𝑖(−𝑘𝑥`, 𝑘𝑦`, 𝜔`)�̂�𝑖𝑇(−𝑘𝑥`, 𝑘𝑦`, 𝜔`)

+ 𝐻(−𝑘𝑥`, 𝑘𝑦`, 𝜔`)𝑀𝑠(𝑘𝑥`, 𝑘𝑦`, 𝜔`)�̂�𝑠𝑇(𝑘𝑥`, 𝑘𝑦`, 𝜔`)]𝑒
−𝑖(�⃗� `⋅𝑟 `−𝜔`𝑡`)𝑑𝑞 `𝑑𝜔`. 

(4.3.13) 

Finally, plugging in the transformation of the phase shifter, given by Eq. (4.2.14), gave 

the output operators expressed by the operators after the SPDC source: 
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 �̂�3(𝑟 , 𝑡)

= ∫[𝐸(−𝑘𝑥, 𝑘𝑦, 𝜔)𝑀𝑖(𝑘𝑥, 𝑘𝑦, 𝜔)�̂�𝑖(𝑘𝑥 , 𝑘𝑦, 𝜔)𝑒
−𝑖𝜔𝑇

+ 𝐹(𝑘𝑥, 𝑘𝑦, 𝜔)𝑀𝑠(−𝑘𝑥, 𝑘𝑦, 𝜔)�̂�𝑠(−𝑘𝑥, 𝑘𝑦, 𝜔)]𝑒
−𝑖(�⃗� ⋅𝑟 −𝜔𝑡)𝑑𝑞 𝑑𝜔, 

�̂�4(𝑟 `, 𝑡`)

= ∫[𝐺(𝑘𝑥`, 𝑘𝑦`, 𝜔`)𝑀𝑖(−𝑘𝑥`, 𝑘𝑦`, 𝜔`)�̂�𝑖(−𝑘𝑥`, 𝑘𝑦`, 𝜔`)𝑒
−𝑖𝜔`𝑇

+ 𝐻(−𝑘𝑥`, 𝑘𝑦`, 𝜔`)𝑀𝑠(𝑘𝑥`, 𝑘𝑦`, 𝜔`)�̂�𝑠(𝑘𝑥`, 𝑘𝑦`, 𝜔`)]𝑒
−𝑖(�⃗� `⋅𝑟 `−𝜔`𝑡`)𝑑𝑞 `𝑑𝜔`. 

(4.3.14) 
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4.3.3. HOM System Second Order Correlation Function 

Having found the output operators, I calculated the second order correlation function: 

 𝐺(2)(𝑟 1, 𝑡1, 𝑟 2, 𝑡2) = ⟨Ψ|�̂�𝑌
†(𝑟 2, 𝑡2)�̂�𝑋

†(𝑟 1, 𝑡1)�̂�𝑋(𝑟 1, 𝑡1)�̂�𝑌(𝑟 2, 𝑡2)|Ψ⟩. (4.3.15) 

I plugged in the input wave function, given by Eq. (4.2.13), and the output operators in terms 

of the input operators, given by Eq. (4.3.14), and denoted the different frequency variables with 

the subscripts 1-6, according to their order of appearance: 

𝐺(2) = ⟨0|∫𝑑𝑞 1𝑑𝜔1𝜑
∗(𝑞 1, 𝜔1) 

× �̂�𝑖(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)�̂�𝑠(𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

×∫[𝐺∗(𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑀𝑖
∗(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)�̂�𝑖

†(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑒
𝑖𝜔2𝑇 

+𝐻∗(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑀𝑠
∗(𝑘2𝑥, 𝑘2𝑦, 𝜔2)�̂�𝑠

†(𝑘2𝑥, 𝑘2𝑦, 𝜔2)]𝑒
𝑖(�⃗� 2⋅𝑟 2−𝜔2𝑡2)𝑑𝑞 2𝑑𝜔2 

×∫[𝐸∗(−𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑀𝑖
∗(𝑘3𝑥, 𝑘3𝑦, 𝜔3)�̂�𝑖

†(𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑒
𝑖𝜔3𝑇 

+𝐹∗(𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑀𝑠
∗(−𝑘3𝑥, 𝑘3𝑦, 𝜔3)�̂�𝑠

†(−𝑘3𝑥, 𝑘3𝑦, 𝜔3)]𝑒
𝑖(�⃗� 3⋅𝑟 1−𝜔3𝑡1)𝑑𝑞 3𝑑𝜔3 

×∫[𝐸(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑀𝑖(𝑘4𝑥, 𝑘4𝑦, 𝜔4)�̂�𝑖(𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑒
−𝑖𝜔4𝑇 

+𝐹(𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑀𝑠(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)�̂�𝑠(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)]𝑒
−𝑖(�⃗� 4⋅𝑟 1−𝜔4𝑡1)𝑑𝑞 4𝑑𝜔4 

×∫[𝐺(𝑘5𝑥, 𝑘5𝑦 , 𝜔5)𝑀𝑖(−𝑘5𝑥, 𝑘5𝑦, 𝜔5)�̂�𝑖(−𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑒
−𝑖𝜔5𝑇 

+𝐻(−𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑀𝑠(𝑘5𝑥, 𝑘5𝑦, 𝜔5)�̂�𝑠(𝑘5𝑥, 𝑘5𝑦 , 𝜔5)]𝑒
−𝑖(�⃗� 5⋅𝑟 2−𝜔5𝑡2)𝑑𝑞 5𝑑𝜔5 

×∫𝑑𝑞 6𝑑𝜔6𝜑
∗(𝑞 6, 𝜔6) 

× �̂�𝑠
†(𝑘6𝑥, 𝑘6𝑦, 𝜔6)�̂�𝑖

†(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥 , −𝑘6𝑦, 𝜔𝑝 − 𝜔6)|0⟩ 

(4.3.16) 

In addition, I changed the form of the exponents to separate the space and time 

dependencies: 

 𝑒𝑖(�⃗� 2⋅𝑟 2−𝜔2𝑡2)𝑒𝑖(�⃗� 3⋅𝑟 1−𝜔3𝑡1)𝑒−𝑖(�⃗� 4⋅𝑟 1−𝜔4𝑡1)𝑒−𝑖(�⃗� 5⋅𝑟 2−𝜔5𝑡2) 

= 𝑒𝑖[(
(𝑘2𝑥,𝑘2𝑦)−(𝑘5𝑥,𝑘5𝑦))⋅𝑟 2−((𝑘4𝑥,𝑘4𝑦)−(𝑘3𝑥,𝑘3𝑦))⋅𝑟 1]𝑒−𝑖[(𝜔2−𝜔5)𝑡2−(𝜔4−𝜔3)𝑡1] 

(4.3.17) 

Next, I gathered the integrals and the exponents outside of the expectation value and 

looked at the general term in the expectation value to find which terms nullify and which 

remain. The general term has the following form: 

 ⟨0|�̂�𝑖�̂�𝑠(�̂�𝑠
† 𝑜𝑟 �̂�𝑖

†)(�̂�𝑠
† 𝑜𝑟 �̂�𝑖

†)(�̂�𝑠 𝑜𝑟 �̂�𝑖)(�̂�𝑠 𝑜𝑟 �̂�𝑖)�̂�𝑠
†�̂�𝑖
†|0⟩, (4.3.18) 

and only 4 terms remained: 
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 ⟨0|�̂�𝑖�̂�𝑠(�̂�𝑠
†�̂�𝑖
†�̂�𝑠�̂�𝑖)�̂�𝑠

†�̂�𝑖
†|0⟩ + ⟨0|�̂�𝑖�̂�𝑠(�̂�𝑠

†�̂�𝑖
†�̂�𝑖�̂�𝑠)�̂�𝑠

†�̂�𝑖
†|0⟩ 

+⟨0|�̂�𝑖�̂�𝑠(�̂�𝑖
†�̂�𝑠
†�̂�𝑠�̂�𝑖)�̂�𝑠

†�̂�𝑖
†|0⟩ + ⟨0|�̂�𝑖�̂�𝑠(�̂�𝑖

†�̂�𝑠
†�̂�𝑖�̂�𝑠)�̂�𝑠

†�̂�𝑖
†|0⟩. 

(4.3.19) 

Or explicitly, the expectation value 𝐸𝑉 is: 

𝐸𝑉

= 𝐻∗(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑀𝑠
∗(𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝐸

∗(−𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑀𝑖
∗(𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑒

𝑖𝜔3𝑇 

× 𝐹(𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑀𝑠(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝐺(𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑀𝑖(−𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑒
−𝑖𝜔5𝑇 

× ⟨0|�̂�𝑖(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)�̂�𝑠(𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

× �̂�𝑠
†(𝑘2𝑥, 𝑘2𝑦, 𝜔2)�̂�𝑖

†(𝑘3𝑥, 𝑘3𝑦, 𝜔3)�̂�𝑠(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)�̂�𝑖(−𝑘5𝑥, 𝑘5𝑦, 𝜔5) 

× �̂�𝑠
†(𝑘6𝑥, 𝑘6𝑦, 𝜔6)�̂�𝑖

†(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥 , −𝑘6𝑦, 𝜔𝑝 − 𝜔6)|0⟩ 

 

+𝐻∗(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑀𝑠
∗(𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝐸

∗(−𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑀𝑖
∗(𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑒

𝑖𝜔3𝑇 

× 𝐸(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑀𝑖(𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑒
−𝑖𝜔4𝑇𝐻(−𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑀𝑠(𝑘5𝑥, 𝑘5𝑦, 𝜔5) 

× ⟨0|�̂�𝑖(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)�̂�𝑠(𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

× �̂�𝑠
†(𝑘2𝑥, 𝑘2𝑦, 𝜔2)�̂�𝑖

†(𝑘3𝑥, 𝑘3𝑦, 𝜔3)�̂�𝑖(𝑘4𝑥, 𝑘4𝑦, 𝜔4)�̂�𝑠(𝑘5𝑥, 𝑘5𝑦, 𝜔5) 

× �̂�𝑠
†(𝑘6𝑥, 𝑘6𝑦, 𝜔6)�̂�𝑖

†(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥 , −𝑘6𝑦, 𝜔𝑝 − 𝜔6)|0⟩ 

 

+𝐺∗(𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑀𝑖
∗(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑒

𝑖𝜔2𝑇𝐹∗(𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑀𝑠
∗(−𝑘3𝑥, 𝑘3𝑦, 𝜔3) 

× 𝐹(𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑀𝑠(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝐺(𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑀𝑖(−𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑒
−𝑖𝜔5𝑇 

× ⟨0|�̂�𝑖(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)�̂�𝑠(𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

× �̂�𝑖
†(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)�̂�𝑠

†(−𝑘3𝑥, 𝑘3𝑦, 𝜔3)�̂�𝑠(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)�̂�𝑖(−𝑘5𝑥, 𝑘5𝑦, 𝜔5) 

× �̂�𝑠
†(𝑘6𝑥, 𝑘6𝑦, 𝜔6)�̂�𝑖

†(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥 , −𝑘6𝑦, 𝜔𝑝 − 𝜔6)|0⟩ 

 

+𝐺∗(𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑀𝑖
∗(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑒

𝑖𝜔2𝑇𝐹∗(𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑀𝑠
∗(−𝑘3𝑥, 𝑘3𝑦, 𝜔3) 

× 𝐸(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑀𝑖(𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑒
−𝑖𝜔4𝑇𝐻(−𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑀𝑠(𝑘5𝑥, 𝑘5𝑦, 𝜔5) 

× ⟨0|�̂�𝑖(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)�̂�𝑠(𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

× �̂�𝑖
†(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)�̂�𝑠

†(−𝑘3𝑥, 𝑘3𝑦, 𝜔3)�̂�𝑖(𝑘4𝑥, 𝑘4𝑦, 𝜔4)�̂�𝑠(𝑘5𝑥, 𝑘5𝑦, 𝜔5) 

× �̂�𝑠
†(𝑘6𝑥, 𝑘6𝑦, 𝜔6)�̂�𝑖

†(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥 , −𝑘6𝑦, 𝜔𝑝 − 𝜔6)|0⟩ 

(4.3.20) 

 

  



39 

From the vacuum expectation values, I got: 

𝐸𝑉

= 𝐻∗(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑀𝑠
∗(𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝐸

∗(−𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑀𝑖
∗(𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑒

𝑖𝜔3𝑇 

× 𝐹(𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑀𝑠(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝐺(𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑀𝑖(−𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑒
−𝑖𝜔5𝑇 

×
1

(2𝜋)3
𝛿𝑖,𝑖𝛿 ((−𝑘5𝑥) − (𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥)) 

× 𝛿 (𝑘5𝑦 − (−𝑘6𝑦)) 𝛿 (𝜔5 − (𝜔𝑝 − 𝜔6)) 

×
1

(2𝜋)3
𝛿𝑠,𝑠𝛿((−𝑘4𝑥) − 𝑘6𝑥)𝛿(𝑘4𝑦 − 𝑘6𝑦)𝛿(𝜔4 − 𝜔6) 

×
1

(2𝜋)3
𝛿𝑖,𝑖𝛿 ((𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥) − 𝑘3𝑥) 

× 𝛿 ((−𝑘1𝑦) − 𝑘3𝑦) 𝛿 ((𝜔𝑝 − 𝜔1) − 𝜔3) 

×
1

(2𝜋)3
𝛿𝑠,𝑠𝛿(𝑘1𝑥 − 𝑘2𝑥)𝛿(𝑘1𝑦 − 𝑘2𝑦)𝛿(𝜔1 − 𝜔2) 

 

+𝐻∗(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑀𝑠
∗(𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝐸

∗(−𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑀𝑖
∗(𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑒

𝑖𝜔3𝑇 

× 𝐸(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑀𝑖(𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑒
−𝑖𝜔4𝑇𝐻(−𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑀𝑠(𝑘5𝑥, 𝑘5𝑦, 𝜔5) 

×
1

(2𝜋)3
𝛿𝑖,𝑖𝛿 (𝑘4𝑥 − (𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥)) 

× 𝛿 (𝑘4𝑦 − (−𝑘6𝑦)) 𝛿 (𝜔4 − (𝜔𝑝 − 𝜔6)) 

×
1

(2𝜋)3
𝛿𝑠,𝑠𝛿(𝑘5𝑥 − 𝑘6𝑥)𝛿(𝑘5𝑦 − 𝑘6𝑦)𝛿(𝜔5 − 𝜔6) 

×
1

(2𝜋)3
𝛿𝑖,𝑖𝛿 ((𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥) − 𝑘3𝑥) 

× 𝛿 ((−𝑘1𝑦) − 𝑘3𝑦) 𝛿 ((𝜔𝑝 − 𝜔1) − 𝜔3) 

×
1

(2𝜋)3
𝛿𝑠,𝑠𝛿(𝑘1𝑥 − 𝑘2𝑥)𝛿(𝑘1𝑦 − 𝑘2𝑦)𝛿(𝜔1 − 𝜔2) 

 

+𝐺∗(𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑀𝑖
∗(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑒

𝑖𝜔2𝑇𝐹∗(𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑀𝑠
∗(−𝑘3𝑥, 𝑘3𝑦, 𝜔3) 

× 𝐹(𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑀𝑠(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝐺(𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑀𝑖(−𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑒
−𝑖𝜔5𝑇 

×
1

(2𝜋)3
𝛿𝑖,𝑖𝛿 ((−𝑘5𝑥) − (𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥)) 

× 𝛿 (𝑘5𝑦 − (−𝑘6𝑦)) 𝛿 (𝜔5 − (𝜔𝑝 − 𝜔6)) 

(4.3.21) 
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×
1

(2𝜋)3
𝛿𝑠,𝑠𝛿((−𝑘4𝑥) − 𝑘6𝑥)𝛿(𝑘4𝑦 − 𝑘6𝑦)𝛿(𝜔4 − 𝜔6) 

×
1

(2𝜋)3
𝛿𝑠,𝑠𝛿(𝑘1𝑥 − (−𝑘3𝑥))𝛿(𝑘1𝑦 − 𝑘3𝑦)𝛿(𝜔1 − 𝜔3) 

×
1

(2𝜋)3
𝛿𝑖,𝑖𝛿 ((𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥) − (−𝑘2𝑥)) 

× 𝛿 ((−𝑘1𝑦) − 𝑘2𝑦) 𝛿 ((𝜔𝑝 − 𝜔1) − 𝜔2) 

 

+𝐺∗(𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑀𝑖
∗(−𝑘2𝑥, 𝑘2𝑦, 𝜔2)𝑒

𝑖𝜔2𝑇𝐹∗(𝑘3𝑥, 𝑘3𝑦, 𝜔3)𝑀𝑠
∗(−𝑘3𝑥, 𝑘3𝑦, 𝜔3) 

× 𝐸(−𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑀𝑖(𝑘4𝑥, 𝑘4𝑦, 𝜔4)𝑒
−𝑖𝜔4𝑇𝐻(−𝑘5𝑥, 𝑘5𝑦, 𝜔5)𝑀𝑠(𝑘5𝑥, 𝑘5𝑦, 𝜔5) 

×
1

(2𝜋)3
𝛿𝑖,𝑖𝛿 (𝑘4𝑥 − (𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥)) 

× 𝛿 (𝑘4𝑦 − (−𝑘6𝑦)) 𝛿 (𝜔4 − (𝜔𝑝 − 𝜔6)) 

×
1

(2𝜋)3
𝛿𝑠,𝑠𝛿(𝑘5𝑥 − 𝑘6𝑥)𝛿(𝑘5𝑦 − 𝑘6𝑦)𝛿(𝜔5 − 𝜔6) 

×
1

(2𝜋)3
𝛿𝑠,𝑠𝛿(𝑘1𝑥 − (−𝑘3𝑥))𝛿(𝑘1𝑦 − 𝑘3𝑦)𝛿(𝜔1 − 𝜔3) 

×
1

(2𝜋)3
𝛿𝑖,𝑖𝛿 ((𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥) − (−𝑘2𝑥)) 

× 𝛿 ((−𝑘1𝑦) − 𝑘2𝑦) 𝛿 ((𝜔𝑝 − 𝜔1) − 𝜔2) 
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I then plugged in the expectation value back into the expression for 𝐺(2), integrated 

over 𝑑𝑞 2𝑑𝜔2𝑑𝑞 3𝑑𝜔3𝑑𝑞 4𝑑𝜔4𝑑𝑞 5𝑑𝜔5 and used the properties of the delta function to get: 

 
𝐺(2) =

1

(2𝜋)12
∫𝑑𝑞 1𝑑𝜔1𝑑𝑞 6𝑑𝜔6𝜑

∗(𝑞 1, 𝜔1)𝜑(𝑞 6, 𝜔6) 

× [𝑒𝑖[(
(𝑘1𝑥,𝑘1𝑦)−(−(𝑘𝑝𝑥−𝐺𝑥−𝑘6𝑥),−𝑘6𝑦))⋅𝑟 2−((−𝑘6𝑥,𝑘6𝑦)−(𝑘𝑝𝑥−𝐺𝑥−𝑘1𝑥,−𝑘1𝑦))⋅𝑟 1] 

× 𝑒−𝑖[(𝜔1−
(𝜔𝑝−𝜔6))𝑡2−(𝜔6−(𝜔𝑝−𝜔1))𝑡1] 

× 𝐻∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

× 𝐸∗(−(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥), −𝑘1𝑦, 𝜔𝑝 − 𝜔1) 

×𝑀𝑖
∗(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑒

𝑖(𝜔𝑝−𝜔1)𝑇 

× 𝐹(−𝑘6𝑥, 𝑘6𝑦, 𝜔6)𝑀𝑠(𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

× 𝐺(−(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥), −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

×𝑀𝑖(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6)𝑒
−𝑖(𝜔𝑝−𝜔6)𝑇 

 

+𝑒𝑖[(
(𝑘1𝑥,𝑘1𝑦)−(𝑘6𝑥,𝑘6𝑦))⋅𝑟 2−((𝑘𝑝𝑥−𝐺𝑥−𝑘6𝑥,−𝑘6𝑦)−(𝑘𝑝𝑥−𝐺𝑥−𝑘1𝑥,−𝑘1𝑦))⋅𝑟 1] 

× 𝑒−𝑖[
(𝜔1−𝜔6)𝑡2−((𝜔𝑝−𝜔6)−(𝜔𝑝−𝜔1))𝑡1] 

× 𝐻∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

× 𝐸∗(−(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥), −𝑘1𝑦, 𝜔𝑝 − 𝜔1) 

×𝑀𝑖
∗(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑒

𝑖(𝜔𝑝−𝜔1)𝑇 

× 𝐸(−(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥), −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

×𝑀𝑖(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6)𝑒
−𝑖(𝜔𝑝−𝜔6)𝑇 

×𝐻(−𝑘6𝑥, 𝑘6𝑦, 𝜔6)𝑀𝑠(𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

 

+𝑒𝑖[(
(−(𝑘𝑝𝑥−𝐺𝑥−𝑘1𝑥),−𝑘1𝑦)−(−(𝑘𝑝𝑥−𝐺𝑥−𝑘6𝑥),−𝑘6𝑦))⋅𝑟 2−((−𝑘6𝑥,𝑘6𝑦)−(−𝑘1𝑥,𝑘1𝑦))⋅𝑟 1] 

× 𝑒−𝑖[(
(𝜔𝑝−𝜔1)−(𝜔𝑝−𝜔6))𝑡2−(𝜔6−𝜔1)𝑡1] 

× 𝐺∗(−(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥), −𝑘1𝑦, 𝜔𝑝 − 𝜔1) 

×𝑀𝑖
∗(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑒

𝑖(𝜔𝑝−𝜔1)𝑇 

× 𝐹∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

× 𝐹(−𝑘6𝑥, 𝑘6𝑦, 𝜔6)𝑀𝑠(𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

× 𝐺(−(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥), −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

(4.3.22) 
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×𝑀𝑖(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6)𝑒
−𝑖(𝜔𝑝−𝜔6)𝑇 

 

+𝑒𝑖[(
(−(𝑘𝑝𝑥−𝐺𝑥−𝑘1𝑥),−𝑘1𝑦)−(𝑘6𝑥,𝑘6𝑦))⋅𝑟 2−((𝑘𝑝𝑥−𝐺𝑥−𝑘6𝑥,−𝑘6𝑦)−(−𝑘1𝑥,𝑘1𝑦))⋅𝑟 1] 

× 𝑒−𝑖[(
(𝜔𝑝−𝜔1)−𝜔6)𝑡2−((𝜔𝑝−𝜔6)−𝜔1)𝑡1] 

× 𝐺∗(−(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥), −𝑘1𝑦, 𝜔𝑝 − 𝜔1) 

×𝑀𝑖
∗(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑒

𝑖(𝜔𝑝−𝜔1)𝑇 

× 𝐹∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

× 𝐸(−(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥), −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

×𝑀𝑖(𝑘𝑝𝑥 − 𝐺𝑥 − 𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6)𝑒
−𝑖(𝜔𝑝−𝜔6)𝑇 

× 𝐻(−𝑘6𝑥, 𝑘6𝑦, 𝜔6)𝑀𝑠(𝑘6𝑥, 𝑘6𝑦, 𝜔6)] 
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Note that in the chosen reference frame, of the optical axis, we have: 𝑘𝑠𝑥 = 𝑘𝑖𝑥, so 

𝑘𝑝𝑥 = 𝐺𝑥, and 𝑘𝑝𝑥 − 𝐺𝑥 = 0. I used this fact and organized the expression to finally obtain: 

 
𝐺(2) =

1

(2𝜋)12
∫𝑑𝑞 1𝑑𝜔1𝑑𝑞 6𝑑𝜔6𝜑

∗(𝑞 1, 𝜔1)𝜑(𝑞 6, 𝜔6) 

× [𝑒𝑖(
(𝑘1𝑥,𝑘1𝑦)−(𝑘6𝑥,−𝑘6𝑦))⋅(𝑟 2−𝑟 1)𝑒−𝑖(𝜔6−

(𝜔𝑝−𝜔1))(𝑡2−𝑡1)𝑒𝑖(𝜔6−𝜔1)𝑇 

×𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠(𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

×𝑀𝑖
∗(−𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑀𝑖(−𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

× 𝐸∗(𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝐹(−𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

× 𝐺(𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6)𝐻
∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

 

+𝑒𝑖(
(𝑘1𝑥,𝑘1𝑦)−(𝑘6𝑥,𝑘6𝑦))⋅(𝑟 2−𝑟 1)𝑒−𝑖(𝜔1−𝜔6)(𝑡2−𝑡1)𝑒𝑖(𝜔6−𝜔1)𝑇 

×𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠(𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

×𝑀𝑖
∗(−𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑀𝑖(−𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

× 𝐸∗(𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝐸(𝑘6𝑥 , −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

× 𝐻∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝐻(−𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

 

+𝑒𝑖(
(𝑘1𝑥,−𝑘1𝑦)−(𝑘6𝑥,−𝑘6𝑦))⋅(𝑟 2−𝑟 1)𝑒−𝑖(𝜔6−𝜔1)(𝑡2−𝑡1)𝑒𝑖(𝜔6−𝜔1)𝑇 

×𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠(𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

×𝑀𝑖
∗(−𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑀𝑖(−𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

× 𝐹∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝐹(−𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

× 𝐺∗(𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝐺(𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 −𝜔6) 

 

+𝑒𝑖(
(𝑘1𝑥,−𝑘1𝑦)−(𝑘6𝑥,𝑘6𝑦))⋅(𝑟 2−𝑟 1)𝑒−𝑖(

(𝜔𝑝−𝜔1)−𝜔6)(𝑡2−𝑡1)𝑒𝑖(𝜔6−𝜔1)𝑇 

×𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠(𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

×𝑀𝑖
∗(−𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑀𝑖(−𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

× 𝐸(𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6)𝐹
∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

× 𝐺∗(𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝐻(−𝑘6𝑥, 𝑘6𝑦, 𝜔6)] 

(4.3.23) 
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4.3.4. HOM System Coincidence Count Rate 

Having acquired the second order correlation function, I plugged it into the coincidence 

count rate formula: 

 
𝑅𝐶 = 𝑆∫∫𝐺

(2)(𝑟 1, 𝑡1, 𝑟 2, 𝑡2)𝑑�⃗� 𝑑𝜏 (4.3.24) 

Since the integration time of the detector is much longer than the correlation time of the 

biphotons, where the orders of magnitude of these time intervals are 100 ns versus 1 as, I could 

assume the boundaries of the integral are infinite. 

I integrated over 𝑑�⃗� 𝑑𝜏 and used the definition of the delta function, to get: 

𝑅𝐶 = 𝑆
1

(2𝜋)12
∫𝑑𝑞 1𝑑𝜔1𝑑𝑞 6𝑑𝜔6𝜑

∗(𝑞 1, 𝜔1)𝜑(𝑞 6, 𝜔6) 

× [2𝜋𝛿(𝑘1𝑥 − 𝑘6𝑥)2𝜋𝛿 (𝑘1𝑦 − (−𝑘6𝑦)) 2𝜋𝛿 (𝜔6 − (𝜔𝑝 − 𝜔1)) 𝑒
𝑖(𝜔6−𝜔1)𝑇 

×𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠(𝑘6𝑥 , 𝑘6𝑦, 𝜔6) 

×𝑀𝑖
∗(−𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑀𝑖(−𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

× 𝐸∗(𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝐹(−𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

× 𝐺(𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 −𝜔6)𝐻
∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

 

+2𝜋𝛿(𝑘1𝑥 − 𝑘6𝑥)2𝜋𝛿(𝑘1𝑦 − 𝑘6𝑦)2𝜋𝛿(𝜔1 − 𝜔6)𝑒
𝑖(𝜔6−𝜔1)𝑇 

×𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠(𝑘6𝑥 , 𝑘6𝑦, 𝜔6) 

×𝑀𝑖
∗(−𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑀𝑖(−𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

× 𝐸∗(𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝐸(𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

× 𝐻∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝐻(−𝑘6𝑥, 𝑘6𝑦, 𝜔6) 

 

+2𝜋𝛿(𝑘1𝑥 − 𝑘6𝑥)2𝜋𝛿 ((−𝑘1𝑦) − (−𝑘6𝑦)) 2𝜋𝛿(𝜔6 − 𝜔1)𝑒
𝑖(𝜔6−𝜔1)𝑇 

×𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠(𝑘6𝑥 , 𝑘6𝑦, 𝜔6) 

×𝑀𝑖
∗(−𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑀𝑖(−𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

× 𝐹∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝐹(−𝑘6𝑥 , 𝑘6𝑦, 𝜔6) 

× 𝐺∗(𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝐺(𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

 

+2𝜋𝛿(𝑘1𝑥 − 𝑘6𝑥)2𝜋𝛿 ((−𝑘1𝑦) − 𝑘6𝑦) 2𝜋𝛿 ((𝜔𝑝 − 𝜔1) − 𝜔6) 𝑒
𝑖(𝜔6−𝜔1)𝑇 

×𝑀𝑠
∗(𝑘1𝑥, 𝑘1𝑦, 𝜔1)𝑀𝑠(𝑘6𝑥 , 𝑘6𝑦, 𝜔6) 

(4.3.25) 
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×𝑀𝑖
∗(−𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝑀𝑖(−𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6) 

× 𝐸(𝑘6𝑥, −𝑘6𝑦, 𝜔𝑝 − 𝜔6)𝐹
∗(−𝑘1𝑥, 𝑘1𝑦, 𝜔1) 

× 𝐺∗(𝑘1𝑥, −𝑘1𝑦, 𝜔𝑝 − 𝜔1)𝐻(−𝑘6𝑥, 𝑘6𝑦, 𝜔6)] 

Next, I integrated over 𝑑𝑞 6𝑑𝜔6, used the properties of the delta function, organized the 

result and removed the subscript notation “1” to finally find the analytical expression for the 

coincidence count rate: 

 
𝑅𝐶 =

𝑆

(2𝜋)9
∫𝑑𝑞 𝑑𝜔 

× {|𝜑(𝑘𝑥 , 𝑘𝑦, 𝜔)𝑀𝑠(𝑘𝑥, 𝑘𝑦, 𝜔)𝑀𝑖(−𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)|
2
 

× [|𝐸(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)𝐻(−𝑘𝑥, 𝑘𝑦, 𝜔)|
2
 

+ |𝐹(−𝑘𝑥, 𝑘𝑦, 𝜔)𝐺(𝑘𝑥, −𝑘𝑦 , 𝜔𝑝 − 𝜔)|
2
] 

 

+𝜑∗(𝑘𝑥, 𝑘𝑦, 𝜔)𝜑(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)𝑒
𝑖(𝜔𝑝−2𝜔)𝑇 

×𝑀𝑠(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)𝑀𝑠
∗(𝑘𝑥, 𝑘𝑦, 𝜔) 

×𝑀𝑖(−𝑘𝑥, 𝑘𝑦, 𝜔)𝑀𝑖
∗(−𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔) 

× [𝐸(𝑘𝑥, 𝑘𝑦, 𝜔)𝐹
∗(−𝑘𝑥, 𝑘𝑦, 𝜔) 

× 𝐺∗(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)𝐻(−𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔) 

+𝐸∗(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 −𝜔)𝐹(−𝑘𝑥 , −𝑘𝑦, 𝜔𝑝 − 𝜔) 

× 𝐺(𝑘𝑥, 𝑘𝑦, 𝜔)𝐻
∗(−𝑘𝑥 , 𝑘𝑦, 𝜔)]} 

(4.3.26) 
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4.3.5. SPDC Source Probability Amplitude 

In the final step, I found the expression of the probability amplitude in the wave function 

representation of the SPDC source in terms of the matrix elements of the transfer matrix 

representation. This was done by comparing two different expressions for the coincidence 

count rate of a system containing only an SPDC source. 

The first expression was calculated when I considered the SPDC source alone, and 

appears in Eq. (4.3.10): 

 
𝑅𝐶,𝑆𝑜𝑢𝑟𝑐𝑒 =

𝑆

(2𝜋)3
∫𝑑𝑞 𝑑𝜔|𝐴(𝑞 ,𝜔)𝐶∗(𝑞 , 𝜔)|2. (4.3.27) 

I calculated the second expression from the coincidence count rate of the entire HOM 

system by removing all of the other devices, which I did by plugging in the following transfer 

relations: 

 𝑀𝑠 = 𝑀𝑖 = 1, (
𝐸 𝐹
𝐺 𝐻

) = (
1 0
0 1

). (4.3.28) 

This left me with: 

 
𝑅𝐶,𝐻𝑂𝑀 𝑤𝑖𝑡ℎ 𝑠𝑜𝑢𝑟𝑐𝑒 𝑜𝑛𝑙𝑦 =

𝑆

(2𝜋)9
∫𝑑𝑞 𝑑𝜔|𝜑(𝑞 , 𝜔)|2. (4.3.29) 

By comparing the expressions, the probability amplitude was found to be: 

 𝜑(𝑞 ,𝜔) = (2𝜋)3𝐴(𝑞 ,𝜔)𝐶∗(𝑞 ,𝜔). (4.3.30) 

Plugging the matrix elements of the transfer matrix representing the source into the 

biphoton amplitude, according to Eq. (4.2.7), gives the probability amplitude for the specific 

chosen model: 

 
𝜑(𝑞 , 𝜔) = (2𝜋)3𝜅𝐿𝑒

𝑖𝛥𝑘𝑧𝐿
2 𝑠𝑖𝑛𝑐 (

𝛥𝑘𝑧𝐿

2
). (4.3.31) 

From the resulting expression, we see it is most probable to find the biphotons when the phase 

mismatch nullifies, which implies perfect phase matching. In addition, we see the 

proportionality to the length of the crystal and to the coupling coefficient, and the sinc-like 

behavior, which are all expected from nonlinear optics. 
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The coincidence count rate of the HOM system can now be expressed in terms of the 

symbolic representations of all of the optical devices: 

 
𝑅𝐶 =

𝑆

(2𝜋)3
∫𝑑𝑞 𝑑𝜔 

× {|𝐴(𝑘𝑥, 𝑘𝑦, 𝜔)𝐶
∗(𝑘𝑥 , 𝑘𝑦, 𝜔) 

×𝑀𝑠(𝑘𝑥, 𝑘𝑦, 𝜔)𝑀𝑖(−𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)|
2
 

× [|𝐸(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)𝐻(−𝑘𝑥, 𝑘𝑦, 𝜔)|
2
 

+ |𝐹(−𝑘𝑥, 𝑘𝑦, 𝜔)𝐺(𝑘𝑥, −𝑘𝑦 , 𝜔𝑝 − 𝜔)|
2
] 

 

+𝐴∗(𝑘𝑥, 𝑘𝑦, 𝜔)𝐶(𝑘𝑥, 𝑘𝑦, 𝜔) 

× 𝐴(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)𝐶
∗(𝑘𝑥, −𝑘𝑦 , 𝜔𝑝 − 𝜔)𝑒

𝑖(𝜔𝑝−2𝜔)𝑇 

×𝑀𝑠(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)𝑀𝑠
∗(𝑘𝑥, 𝑘𝑦, 𝜔) 

×𝑀𝑖(−𝑘𝑥, 𝑘𝑦, 𝜔)𝑀𝑖
∗(−𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔) 

× [𝐸(𝑘𝑥, 𝑘𝑦, 𝜔)𝐹
∗(−𝑘𝑥, 𝑘𝑦, 𝜔) 

× 𝐺∗(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)𝐻(−𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔) 

+𝐸∗(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 −𝜔)𝐹(−𝑘𝑥 , −𝑘𝑦, 𝜔𝑝 − 𝜔) 

× 𝐺(𝑘𝑥, 𝑘𝑦, 𝜔)𝐻
∗(−𝑘𝑥 , 𝑘𝑦, 𝜔)]} 

(4.3.32) 
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4.4. Simulations 

I now present the simulations of the optical system that I have performed. The 

simulations were done using Mathematica for a chosen example system, with device 

parameters which fit the design goals and reflect realistic properties. The simulation of the 

SPDC source are presented first, then the simulation of the multilayer devices, and finally the 

simulation of the entire HOM system, culminating in the successful demonstration of the HOM 

effect. 

 

4.4.1. SPDC Source Simulation 

To demonstrate the feasibility to generate indistinguishable broadband x-ray biphotons, 

I considered an example of a source based on parameters that have been used in previous 

experiments on x-ray SPDC [33]. A diamond crystal was chosen for the nonlinear source 

crystal, due to its extensive use in SPDC measurements at x-ray wavelengths [22,33], narrow 

rocking curve, and simplicity of the theoretical model. The thickness of the crystal was 0.8 

mm, and phase matching was obtained using the C(660) lattice planes. 

The pump photons were polarized inside the scattering plane, their energy was 21 keV, 

their rate was 1013 photons/s, the area of the beam on the crystal was 0.4 mm2, and their 

incidence angle was slightly larger than the Bragg angle, 𝜃𝐵 = 44.609 deg, chosen as 𝜃𝐵 + 8 

mdeg. This deviation was required to solve the phase matching equation for the slightly lower 

than one refractive indices. The coupling coefficient in this case was estimated to have an order 

of magnitude of 10-19 m-1 [22]. In addition, transmission (Laue) geometry was used. 

I chose the central photon energy of the signal and idler photons at 10.5 keV and the 

solution of the phase matching equation resulted in angles of propagation of 0.976 deg and -

0.976 deg with respect to the optical axis described in Fig. 5. The polarizations of the signal 

and idler photons were parallel, which is a result of this setup [33] and is required for 

indistinguishability. 

I calculated the spectrum of the coincidence count rate at the output of the nonlinear 

crystal by integrating Eq. (4.3.10) numerically over the momentum variables, and the result is 

shown in Fig. 6. I chose the aperture size of the detector to be 0.4 deg, which defines the angular 

width of the SPDC and determines the photon energy range accepted by the detector to be 8.54 

keV – 12.89 keV, due to the one-to-one correspondence between the energy and the 

propagation direction. The resulting total rate is about 0.15 pairs/s and the bandwidth is 4.35 

keV. This result agrees with the experimental results [33] and indicates on the possibility to 

measure delays with precision of sub-attosecond time scales. 
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FIG. 6. The spectral dependence of the normalized coincidence count rate between the two 

output ports of the nonlinear crystal. The total bandwidth, which is obtained for a detector 

acceptance angle of 0.4 deg, is 4.35 keV. 
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4.4.2. Multilayer Optical Devices Simulation 

Next, I present the example parameters I have chosen for the multilayer mirrors and beam 

splitter and their simulations. It is shown that it is possible to design optical devices with 

sufficient reflectivity that can accommodate the very broad angular distribution and spectrum 

of the generated biphotons. 

I chose the absorber layers to be platinum and the spacer layers to be carbon, which are 

two commonly used materials [39] with a significant difference between their atomic numbers, 

and I assumed that the substrates are a silicon wafer. I used the data from [45] for the refractive 

indices and absorption coefficients. By using Eqs. (2.4.5) and (2.4.6), I found that 20 bilayers 

with a width of 3.7 nm and with 𝛤 = 0.5 are sufficient to achieve an intensity reflectivity of 

90% and that 10 bilayers are required to achieve approximately 50% reflectivity. For the beam 

splitter, the substrate width was 15 m, which is shorter by an order of magnitude than the 

absorption length at 10.5 keV. 

I simulated the dependence of the intensity reflectivity of the mirrors and the beam 

splitter on the incidence angle for 10.5 keV in Figs. 7(a) and 7(b). As expected, the simulation 

shows peaks in the reflectivity that obey Bragg's law. The high reflectivity at the lower angles 

is due to total reflection. I chose the first peak of the reflectivity at an incident angle of 0.976 

deg, which is the incidence angle of the biphotons on the mirrors at perfect phase matching at 

the degenerate photon energy. The maximum of the reflectivity is 90% and the FWHM of the 

reflectivity of the mirror and the beam splitter are 0.07 deg and 0.095 deg, respectively. 

Figs. 7(c) and 7(d) show the photon energy dependence of the reflectivity for an incident 

angle of 0.976 deg. The FWHM of the reflectivity of the mirror is 0.758 keV and of the beam 

splitter is 1.04 keV, whereas the bandwidth of the x-ray SPDC biphotons is 4.35 keV. Since 

the angular acceptance and the bandwidth of the multilayer devices are comparable to those of 

the biphotons, the parameters I selected enable the observation of the HOM dip at a reasonable 

count rate. 
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FIG. 7. The reflectivity of the multilayer mirror and the beam splitter as a function of the 

incidence angle, (a) and (b), and the photon energy, (c) and (d). Panels (a) and (c) show the 

mirror reflectivity and panels (b) and (d) the reflectivity of the beam splitter. The width of a 

bilayer is 3.7 nm, with 𝛤 = 0.5. 
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4.4.3. HOM Interferometer Simulation 

Now I turn to the main result of this work and show that the dip of x-ray HOM can be as 

short as 0.6 attoseconds at FWHM. To reflect realistic detector properties, I chose an aperture 

size of the detector of 0.4 deg. This defines the angular width of the SPDC and determines the 

photon energy range accepted by the detector to be 8.54 keV – 12.89 keV, due to the one-to-

one correspondence between the energy and the propagation direction. I numerically calculated 

the integral described by Eq. (4.3.32) for various delays between the signal and the idler 

photons. My results are shown in Fig. 8 and are normalized to the output of the SPDC source. 

It is clear that the dip of the coincidence count rate is nearly zero. The FWHM of the dip 

indicates on a correlation time of about 6.0 attoseconds, which corresponds to a spectral 

bandwidth of 7.6.1 keV. This ultrashort time scale corresponds to an optical path difference 

between the two arms of the HOM setup of about 7.8 Angstroms. 

 

 

FIG. 8. The normalized coincidence count rate between the two output ports of the beam splitter 

as a function of the delay between the biphotons. The width of the predicted dip is about 6.0 

attoseconds at FWHM. The shift from zero is due to the slight difference in the paths of the 

biphotons. See text for details. 
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5. Discussion and Summary 

Reviewing the achievements of my design choices, it is evident that the design of the 

source ensures the generation of indistinguishable broadband x-ray biphotons with suppressed 

background noise, and the biphotons are indeed indistinguishable by their time of arrival to the 

interferometer. In addition, the design of the multilayer interferometer accommodates the broad 

bandwidth and angular distribution of the biphotons. Regarding the schematic design of the 

entire system, it has a considerable advantage over systems which demonstrate a coincidence 

count rate dip but include more devices – it is much easier to implement experimentally. 

I note that since the mirrors are designed to have more layers than the beam splitter, the 

biphoton bandwidth and angular spread are limited by the mirrors. Therefore, they are narrower 

than the acceptance angle and the spectral bandwidth of the beam splitter (the range where the 

reflectivity and the transmission are almost constant). This design helps ensuring that the signal 

and idler photons are indistinguishable by their frequency distribution at the input of the beam 

splitter. 

The analytical result of the coincidence count rate behaves as expected. For zero delay, 

the biphotons are indistinguishable by their time of arrival to the beam splitter, and the rate is 

expected to nullify if the biphotons are also indistinguishable by their frequency distribution. 

For infinite delay, the biphotons are completely distinguishable by their time of arrival to the 

beam splitter, and the rate is expected to be equal to half the source rate. This behavior can be 

demonstrated via simulations, and can be readily seen for ideal optical devices, by plugging 

the following representations into the result: 

 
𝑀𝑠 = 𝑀𝑖 = 1, (

𝐸 𝐹
𝐺 𝐻

) =
1

√2
(
−𝑖 1
1 −𝑖

). (5.1) 

This gives: 

 
𝑅𝐶,𝐼𝑑𝑒𝑎𝑙 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 =

1

2

𝑆

(2𝜋)9
∫𝑑𝑞 𝑑𝜔 

× [|𝜑(𝑘𝑥, 𝑘𝑦, 𝜔)|
2
− 𝜑∗(𝑘𝑥, 𝑘𝑦, 𝜔)𝜑(𝑘𝑥 , −𝑘𝑦, 𝜔𝑝 − 𝜔)𝑒

𝑖(𝜔𝑝−2𝜔)𝑇]. 

(5.2) 

Plugging in 𝑇 = 0 gives: 

 
𝑅𝐶,𝐼𝑑𝑒𝑎𝑙 𝑑𝑒𝑣𝑖𝑐𝑒𝑠

𝑇=0
→  

1

2

𝑆

(2𝜋)9
∫𝑑𝑞 𝑑𝜔 

× [|𝜑(𝑘𝑥, 𝑘𝑦, 𝜔)|
2
−𝜑∗(𝑘𝑥, 𝑘𝑦, 𝜔)𝜑(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔)]. 

(5.3) 

This expression nullifies if the probability amplitude is symmetrical in the following manner: 

 𝜑(𝑘𝑥, −𝑘𝑦, 𝜔𝑝 − 𝜔) = 𝜑(𝑘𝑥, 𝑘𝑦, 𝜔), (5.4) 
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which is expected since when the probability amplitude is symmetrical, then the biphotons are 

indistinguishable by their frequency distribution. For 𝑇 → ∞, the integration over a 

symmetrical range of the rapidly changing exponent nullifies, which gives: 

 
𝑅𝐶,𝐼𝑑𝑒𝑎𝑙 𝑑𝑒𝑣𝑖𝑐𝑒𝑠

𝑇→∞
→   

1

2

𝑆

(2𝜋)9
∫𝑑𝑞 𝑑𝜔|𝜑(𝑘𝑥, 𝑘𝑦, 𝜔)|

2
. (5.5) 

This expression is equal to exactly half the rate of the source, as expected. 

As for the simulated coincidence count rate for the proposed parameters, it also behaves 

as expected for the extreme values of delays between the biphotons, even though the HOM dip 

appears slightly different than in the ideal case. This happens exactly due to the proposed 

system not being ideal. Due to the losses of the SPDC biphotons in the interferometer, after 

normalizing the coincidence count rate by the total rate of the source, it does not reach 
1

2
. It is 

important to note that when the biphotons impinge on the beam splitter, one of them propagates 

through the substrate first. This asymmetry leads to small differences between the amplitude 

reflectivity of the two beam splitter ports. This in turn is expressed as a shift in the coincidence 

count rate dip. It does not, however, destroy their indistinguishability, due to the intensity 

coefficients remaining the same for both beam splitter sides. Additionally, the probability to 

measure the coincident state at the beam splitter output is proportional to the difference 

between the intensity coefficients [1]. Since the intensity coefficients differ slightly, the dip 

does not reach zero completely. 

I note that the energy bandwidth calculated from the simulation of the example system is 

wider than the bandwidth in Figs. 7(c) and 7(d). However, this is not surprising since those 

figures show the bandwidth for a specific incident angle, while the angular distribution of the 

biphotons is broad. This observation indicates on the possibility to observe even shorter dips 

by designing multilayer devices with an angular dispersion that matches that of the biphotons. 

I emphasize that I have described by the proposed system an example of possible 

parameters. However, my simulations show that the x-ray HOM effect can be measured for a 

large range of parameters. It is clear that the design based on multilayer optics enables this 

broad range of options. One concern to consider is the stability of the measurements against 

mechanical vibrations. I stress that the stability can be improved by using narrower band optical 

devices or narrower detector apertures, but for the cost of widening the dip in the coincidence 

count rate and therefore reducing the resolution. This may be overcome by using more 

sophisticated data analysis procedures [19,20]. Alternatively, fabrication of the system as a 

monolithic structure would improve the stability significantly.  



55 

I also emphasize that while short time delays and optical path differences can be 

measured with x-ray interferometers [46–48], the HOM system exhibits several important 

advantages. Since in the HOM effect the interference is between the wave functions of the 

biphotons and not between classical coherent beams, the experiment can be performed by using 

incoherent sources, whereas standard interferometers require sources with high spatial 

coherence. Another advantage is the requirements for stability of the effect, which are less 

stringent than the requirements for interferometers. While interferometers have to be more 

stable than the wavelength for the entire measurement, thus on the angstrom scale for x-rays, 

in the HOM effect the system has to only be stable enough to maintain the biphotons 

indistinguishable during a detection cycle. 

In summary, I have described how to implement the Hong-Ou-Mandel effect in the x-ray 

regime and how to utilize the effect for the measurement of sub-attosecond time intervals and 

sub-angstrom optical path differences. The measurements are based on the detection of the 

variation of the dip in the coincidence count rate as a function of the parameters of the test 

sample. I have found that the dip can be observed for a broad range of parameters, and in 

particular it depends weakly on the number of layers of the multilayer mirrors and beam splitter. 

The relaxed requirements for stability and for coherence of the source suggest that the effect 

can be used for a large class of measurements for fundamental science and for a variety of 

applications. I also note that the approach I describe can be performed with present day x-ray 

sources although the expected count rate is quite moderate. New advanced sources such as the 

new high repetition rate free-electron lasers [49,50] are expected to enhance the count rate 

significantly. Consequently, my work opens the possibility for quantum precision 

measurements that are supported by the ultra-high spatio-temporal precision that is enabled by 

using quantum effects with x-rays. 
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 א

 תקציר

קצרים מאטושנייה והפרשי מרחק הפרקי זמן  למדוד מאפשרתה ,חדשהמטרולוגיה  שיטתבעבודה זו אני מציג 

מציאותי  תכנוןאני מציע  .X-מנדל בתחום קרני ה-או-קצרים מאנגסטרום, באמצעות שימוש באפקט הונגהאופטיים 

זוהי ההתייחסות  לטכנולוגיות הקיימות. מתאימהו Xקרני  עבור מערכת אופטית אשר מדגימה את האפקט עם

. יתר על כן, אני X-הראשונה לאפקט קוונטי זה והיא מהווה צעד חשוב בהרחבת האופטיקה הקוונטית לתחום קרני ה

עבור מדע בסיסי ומחקר יישומי,  ם של יישומים חדשים רביםוביל לפיתוחישאני מתאר בעבודה זו  תכנוןצופה כי ה

 .Xבאורכי גל של קרני  מאוד בעלות דיוק גבוה וחד לשיטות מדידה קוונטיותובמי

מנדל הינו אפקט קוונטי של התאבכות בין פונקציות הגל של שני פוטונים בלתי מובחנים, אשר -או-אפקט הונג

ם טוניפובלתי מובחנים, ה היותםמכתוצאה  לתוך שתי כניסות שונות של מפצל קרניים סימטרי. זמנית-בונכנסים 

והמדידה של החפיפה בין הגילויים בשתי היציאות מתאפסת, מה תמיד מתגלים באותה היציאה של מפצל הקרניים, 

מגיעים  אינםכאשר הפרש הדרכים האופטיות בין הפוטונים גדל, הם  שמהווה תוצאה שאיננה צפויה מבחינה קלאסית.

. זה מעלה את ההסתברות לכך שתימדד חפיפה הבחנהים יותר ניתנים לעשונ ,אל מפצל הקרנייםהרגע באותו יותר 

-בין הגילויים בשתי היציאות, אשר מגיעה ל
1

2
בעקבות זאת, ההשהיה בין מובחנים לחלוטין.  נהייםכאשר הפוטונים  

 הפוטונים ניתנת למדידה בסקאלות זמן קצרות ביותר.

לחקר הפיזיקה  ות ומעניינות רבותתפתח אפשרויות חדש X-לתחום קרני המנדל -או-אפקט הונגההרחבה של 

 הללודוגמאות ליתרונות  .Xהקוונטית באמצעות שימוש ביתרונות הנובעים מהאנרגיה הגבוהה של פוטונים של קרני 

והזמינות של  רב יותר יחסית לפוטונים אופטיים, היכולת לאפנן אותם לנשיאת מידע X-החודרניות של קרני ה הנם

 גלאים המסוגלים למדוד את מספר הפוטונים הנמדדים, אשר מדגימים יעילויות גילוי גבוהות ורעש רקע זניח.

פחות והדרישות ה מאוד ם הדיוק הגבוהנעכשוויות ה שיטותעל פני  ה זו לביצוע מדידותהיתרונות העיקריים של גיש

יכולה להתגבר על המכשולים  היאלפיכך, טיות של המקור. והקוהרנעבור היציבות של המערכת האופטית  מחמירות

, ןלבצע מדידות של תופעות וגדלים פיזיקליים אשר מחוץ להישג ידולאפשר עכשוויות הטכנולוגיות ההעומדים בפני 

 תהיה שימושית עבור מגוון רחב של דיסציפלינות מדעיות.היא ו

המערכת המוצעת מורכבת  .האופטית באופן סכמטי את המערכת בלתכנןבכדי להדגים את האפקט, אני מתחיל 

תופעת המרת תדר פרמטרית , המבוסס על Xסרט בתדירות קרני -רחביבלתי מובחנים וממקור ליצירת זוגות פוטונים 

וממדל את הרכיבים האופטיים ממשיך אני  .לרוחב הסרט הרחב התואם ,שכבתי-רב ומאינטרפרומטר ת,ספונטני

אני מבצע  לבסוף, ומוצא המערכתהחפיפה בין הגילויים ב קצב אנליטית אתמחשב כן אני מבחינה מתמטית, לאחר מ

 משקפיםמתאימים למטרות התכנון והפרמטרים  , עבורMathematicaבאמצעות לדוגמה מערכת סימולציה של 

בין הגילויים בגרף של קצב החפיפה אטושניות  6.0-אני מוצא רוחב חצי מקסימום של כרכיבים מציאותיים.  מאפייני

קצרים המטרולוגיה זו למדוד פרקי זמן  שיטתאת היכולת של  ממחישהתוצאה זו  כתלות בהשהיה בין הפוטונים.

 קצרים מאנגסטרום.המאטושנייה והפרשי מרחק אופטיים 

 

 



 

  



 

 עבודה זו נעשתה בהדרכתו של

 

 שרון שוורץ פרופ'

 

 אילן-יקה של אוניברסיטת ברסמן המחלקה לפי

  



 

 

  



 

 אילן-ברסיטת בראוני

 

 

 

 אטושנייה-ית תתמטרולוגי

 Xקרני במנדל -או-אפקט הונג עם

 

 

 סרגיי וולקוביץ'

 

 

 

 

 

 עבודה זו מוגשת כחלק מהדרישות לשם קבלת תואר מוסמך

 אילן-יקה של אוניברסיטת ברסבמחלקה לפי
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