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Abstract

In this work, | present a new metrology technique that allows the measurement of sub-
attosecond delays and sub-Angstrom optical path differences, by using the Hong-Ou-Mandel
effect in the x-ray regime. | propose a realistic scheme for an optical system demonstrating the
effect with x-rays, which is compatible with existing technologies. This is the first
consideration of the quantum effect of x-ray Hong-Ou-Mandel and is an important step in the
expansion of quantum optics into the x-ray regime. Furthermore, | anticipate that the scheme 1
describe in this work will lead to numerous novel applications for fundamental science and
applicative research, and especially to quantum measurement techniques with ultra-high
precision at x-ray wavelengths.

The Hong-Ou-Mandel effect is a quantum effect of interference between the wave
functions of two indistinguishable photons, which enter simultaneously into two different input
ports of a 50:50 beam splitter. As a consequence of their indistinguishability, the photons are
always detected at the same output port of the beam splitter, and the coincidence measurement
of the output ports is nullified, which is a classically unexpected result. When the optical path
difference between the photons increases, they no longer reach the beam splitter simultaneously

and become more distinguishable. This raises the probability of coincident detection, which
reaches % when they become completely distinguishable. Thus, the delay between the photons

can be measured on extremely short time scales.

Extending the Hong-Ou-Mandel effect to the x-ray regime will open new and intriguing
possibilities for the study of quantum physics by utilizing the advantages of the high energy of
the x-ray photons. Examples for such advantages are the penetrability of x-rays relative to
optical photons, the ability to modulate them to carry more information, and the availability of
photon number resolving detectors, which demonstrate high detection efficiencies and
negligible background noise. The main advantages of this measurement approach over the
present-day techniques are the ultra-high precision and the relaxed requirements for the
stability of the system and for the coherence of the source. Hence, it can overcome the
hindrances of present-day technologies, enabling the measurements of effects and quantities
that are out of their reach, and will be advantageous for the broad spectrum of scientific
disciplines.

To demonstrate the effect, | start by designing the optical system schematically. The
proposed system is comprised of a source for the generation of indistinguishable broadband x-

ray photon pairs, based on spontaneous parametric down-conversion, and a multilayer-based



interferometer, which accommodates the relatively wide bandwidth. | proceed to model the
optical devices mathematically, then | calculate analytically the coincidence count rate at the
output of the system, and finally | simulate an example system using Mathematica, for
parameters which fit the design goals and reflect realistic device properties. The full width half
max of the coincidence count rate versus the delay between the biphotons is found to be about
0.6 attoseconds. This highlights the capability of this metrology technique to measure sub-

attosecond time delays and sub-Angstrom optical path differences.



1. Introduction

Since its first observation [1], the Hong-Ou-Mandel (HOM) effect has attracted a great
attention due to its importance for fundamental quantum sciences and since it holds a great
promise for new quantum technologies [2-16]. The HOM effect is a quantum effect that is
based on the interference of the wave functions of the photons rather than on the interference
of classical waves. The striking consequence of this quantum interference is manifested when
two indistinguishable photons arrive simultaneously at the two different input ports of an ideal
beam splitter. In contrast to classical waves, the two photons will always be detected at the
same output port of the beam splitter. As a result, coincidence measurements of the output port
are null as long as the photons at the two input ports are indistinguishable.

In a typical HOM experiment two indistinguishable photons are generated and propagate
along two paths. By varying one of the optical paths, it is possible to control the delay between
the two photons so that they do not arrive at the beam splitter simultaneously and their
distinguishability is raised. The more distinguished the photons become, the higher the

probability of coincident detection gets, until it reaches % at complete distinguishability. This

behavior can be used to measure the delay between the arrival times of the photons.

The ability of the HOM effect to detect the indistinguishability of photons on very short
time scales has led to development of various approaches based on the effect for the
measurements of ultrashort delays and optical path differences [17-20]. Measurements based
on the HOM effect are more sustainable than measurements with classical interferometers,
because unlike classical interferometers, HOM measurements are independent of the phase
fluctuations of the optical beams. Consequently, in recent years several schemes and
approaches for sub-femtosecond delay measurements with optical beams have been suggested
and implemented [18,19].

Generally speaking, the extension of quantum optics itself to the x-ray regime can
provide new intriguing opportunities. This is due to the availability of photon number resolving
detectors with higher detection efficiencies and negligible signal to noise ratios, made possible
by the relatively high photon energies. In addition, in many cases the photons are more
penetrative than optical photons, and as they possess higher frequencies, they can be modulated
to carry more information.

Several works on quantum effects in the x-ray regime have been reported in the past few
years [21]. For example, the necessity of a full quantum theory to describe SPDC in the x-ray

regime has been demonstrated in [22], quantum effects such as electromagnetically induced



transparency [23], collective Lamb shift [24], modulation of single y photons [25], ghost
imaging [26], quantum enhanced detection [27], and vacuum-assisted generation of atomic
coherences [28] have been reported as well. In addition, several schemes for the generation of
x-ray polarization entangled photons have been proposed [29-31].

To reap the benefits of extending the HOM effect to the x-ray regime, a key requirement
is a source that can produce indistinguishable photon pairs (also known as biphotons). One
prominent candidate source is spontaneous parametric down conversion (SPDC). In this type
of source, a pump interacts with the vacuum field in a nonlinear crystal and indistinguishable
biphotons can be generated [32]. Indeed, the keV wide bandwidth that has been reported for x-
ray SPDC [22,33] suggests that the corresponding biphoton correlation time is on the order of
a few attoseconds, which opens the possibility to measure delays that are on that order or even
shorter, by using advanced approaches such as the Fisher information analysis [19,20]. In
addition, the implementation of the x-ray HOM effect can lead to the development of quantum
optical coherence tomography, for measurements of very short spatial scales and tiny refractive
index differences at an unprecedented precision [34-37]. This would be appealing for the
imaging of biological samples.

However, the possibility to measure such a broad spectrum HOM effect is not clear. The
main challenge is that x-ray mirrors and beam splitters rely either on small angle reflection or
on Bragg scattering [38,39]. Small angle reflection can be used to reflect a very broad spectrum,
but the generated photons propagate in an angular cone, which is much broader than the
acceptance angle of small angle reflection devices. Bragg scattering from crystals is narrow in
both angle and spectrum, thus with crystal mirrors and beam splitter the HOM effect would be
narrowband and the corresponding dip of the coincidence count rate would be limited to an
order of a few femtoseconds. The alternative possibility is to use Bragg scattering from
artificial periodic structures made by multilayers. However, it is not clear whether the technical
feasibility of the present-day multilayer technology allows the fabrication of such a system. It
is also not clear a priori that the photons that hit upon the two ports of the beam splitter are
indeed indistinguishable, which is an essential requirement for the observation of the HOM
effect.

In this work | describe a system that is based on available technologies for measuring the
HOM effect at x-ray wavelengths, which consists of a nonlinear crystal for the generation of
biphotons, a phase shifter, two multilayer mirrors, and a multilayer beam splitter. | show that
the photons that hit the beam splitter are indeed indistinguishable when arriving simultaneously
and that the system can support the detection of very short delays. I consider a specific example



where the full width half max (FWHM) of the dip is about 0.6 attoseconds and explain how to
control this width. Consequently, my work indicates on the possibility for the development of

systems that are capable to measure sub-attosecond time delays and sub-Angstrom optical path
differences.



2. Background

In this section | present the background regarding the HOM effect and the physical
entities composing the HOM system. | start by describing and explaining the HOM effect and
then | describe the models that | use to represent each of the physical entities participating in
the effect, which are the electromagnetic field, the biphotons source, the interferometer and the

photodetectors.

2.1. The Hong-Ou-Mandel Effect

The HOM effect is a quantum optical effect of interference between the wave functions
of an indistinguishable photon pair, in which the two photons enter different input ports of a
50:50 beam splitter. As a result of this setup, the exiting photons are always detected at the
same output port of the beam splitter [1,32]. The system demonstrating the effect can be seen

in Fig. 1.

Input Output Detector
1 3
50:50 A
Source Beam
Input Splitter Output Detector
2 4 B

FIG. 1. Schematic diagram of the Hong-Ou-Mandel effect system. Two indistinguishable
photons are generated from a source, arrive at the two different input ports of a 50:50 beam
splitter (Input 1 and Input 2), and are detected by two detectors, each positioned at one of the
two different output ports of the beam splitter (Output 3 and Output 4).

To understand the effect, consider an ideal beam splitter, whose input ports will be
marked by “1”” and “2” and output ports will be marked by “3” and “4”. Classically, the energy
of the radiation is expected to split between the output ports of the beam splitter, being
detectable at both of them simultaneously. In contrast, when considering the quantization of
radiation, each photon can only either reflect or transmit, which creates four output
combinations. As we will see next, the indistinguishability of the biphotons causes only two
outcomes to be possible, those where both photons exit the same port. Therefore, the number
of coincidence counts between the outputs is nullified, and measuring it exhibits the non-

classical behavior of the electromagnetic radiation.



This can be described mathematically by modelling the beam splitter by a unitary

transformation, relating the input and output creation operators. As an example, I shall choose:

al 11 1 al
(a;r)zﬁ(l —1)<az>’ (2.1.1)

where le is a photon creation operator at port "i". Every photon enters a different input port,
so for single mode photons the input state can be described by:

[¥)in = [1111)2, (2.1.2)
where |n); is a Fock state representing "n" photons at port "i". The output state is then

calculated to be:

1
[PV)our = ﬁ(|2>3|0>4 —10)312)4), (2.1.3)

which shows that the exiting photons are always detected at the same port. Therefore, the
coincidence count rate between both output ports drops to zero, which is a purely quantum
result. We see that the intensity correlation is the quantity of interest.

As the distinguishability of the biphotons raises, the probability of coincident detection

as a function of the distinguishability begins to raise from zero, until it reaches % at complete

distinguishability. When considering multimode photons, which possess a temporal
distribution, the biphotons can be distinguished by their time of arrival to the beam splitter.
This distinguishability can be varied by changing the optical path difference between the
biphotons, thus creating a relative delay between them. In the private case in which the
biphotons possess equal distributions, they become completely distinguishable when the delay
between them reaches the width of their probability density function in the time domain.

The behavior of the number of coincidence counts when the distinguishability between
the biphotons is changed can be seen in Fig. 2, which is taken from the original paper [1]. In
the original experiment the delay between the biphotons was modified by changing the position
of the beam splitter. When the beam splitter is positioned such that the relative delay nullifies
and the biphotons are indistinguishable, the number of coincidence counts dips towards zero.
The width of the dip is comparable to the width of the biphoton probability density function in
the time domain, or, equivalently, to the inverse of its width in the frequency domain.

The time interval between the biphotons was measured to be as short as approximately
100 fs, and 1 will show that in my proposed system this interval decreases to attoseconds. This
occurs since in my system the bandwidth that reaches the beam splitter was designed to be

wider than the bandwidth in the original experiment by over 5 orders of magnitude.
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FIG. 2. The measured (dotted line) and theoretical (solid line) number of coincidence counts
in ten minutes as a function of the displacement of the beam splitter in the original paper. The
vertical error bars correspond to a standard deviation and the horizontal are based on

measurement accuracy estimates.



2.2. Electromagnetic Field Quantization

This work utilizes a quantum model of the electromagnetic field which is obtained by a
different procedure than the one commonly used in quantum optics. In this model, the number
operator represents the number of energy flux (intensity) quanta in a field mode instead of
energy quanta. The motivation behind this is that the energy flux is the conserved physical
quantity in optical processes according to Poynting theorem. This fact holds quantum
mechanically as well, and in particular, at the source of the system, the quantity that is
converted from the pump field to the signal and idler fields is a quantum of energy flux. In
addition, the energy flux is what is measured in practice, and this model is also justified
experimentally and has been used by parts of the quantum optics community for years,
including our group [22,26,27,33]. Another justification is that it allows to find equations
similar to the Heisenberg equation for the ladder operators, in which a position derivative
appears instead of the time derivative, but position and time are related through the speed of
light, c. Overall, it has become significantly more probable that this model describes reality
better than the alternatives.

Also, while it is common to neglect the spatial dependence of the ladder operators in
quantum optics, this work utilizes the general model in which the spatial dependence is
included. This allows to calculate the full spatiotemporal dependence of the physical quantities
of interest.

The quantization of the electromagnetic field is achieved by the following procedure.
The classical electric field modes of a physical system of interest are specified. Then, an
operator is defined to represent the field dynamical variable from the classical physical
quantity. Finally, the operator is expressed via ladder operators and the corresponding bosonic
commutation relations are set. The ladder operators are defined based on the electric field,
instead of the commonly used vector potential, by comparing the number operator to the
intensity of a field mode. This causes the ladder operators to have the physical meaning of
creating or destroying one quantum of energy flux, instead of a quantum of energy, and the
resulting discretized physical quantity becomes the energy flux.

In this work, the quantization procedure is performed for the following general classical
electric field modes, which are expected on physical grounds. The modes are monochromatic

plane waves with varying amplitudes and a continuous frequency range:

E(x,y,2t) = E(x,y,7 t)e!F7-9Y% 1 c.c, (2.2.1)



where E is the complex amplitude of the monochromatic plane wave, k is its wavevector, w is
its angular frequency, and é is its polarization.

Looking at the intensity of the field and comparing it to the intensity operator allows to
find the relation between the electric field and the ladder operators. The intensity of a field
mode is:

= EE ) (2.2.2)
= 2 cos(0), 2.

where 7 is the impedance of the wave and 8 its propagation angle, which effects the intensity.

Comparing this expression to the intensity in terms of the number operator:

I = hwa'ta, (2.2.3)
leads to the following substitution:
2nhw;\>°
E - (M) Q. (2.2.4)
cos(Hj)

It is immediately noticeable that the ladder operators are not unitless in this framework.
The physical meaning of the operators &; and dJT when they act on the vacuum state is of

destroying or creating a quantum of energy flux in a mode j, respectively, and they possess the

following units:
1
The number operator, A]de, has the meaning of representing the measurement of the number

of detected quanta of energy flux in mode j. Its units are of flux:
1

. (2.2.6)
m2-s

[afa] =

Additionally, similar to the field amplitudes, the ladder operators depend on space and time, or

the corresponding frequency domain variables. For an example, the notation 4; (kz, ky, ks, w)

denotes a destruction operator of a quantum of flux in mode (kx, ky, kz,a)), with j further
specifying the field mode.

To relate the real and frequency domains, the following definition of the Fourier

transform is used:

1

F(Z,C_i,(,l)) Z(ZT)?'

f Jf(z,?,t)eiﬁ'Fe‘iwtd?dt,
e (2.2.7)

f(z,?,t)zf f F(z,§,w)e dTe®tdGdw,

where 7 = (x,y) and G = (k. ky).



Thus, for the ladder operators:

4i(z,q,w) = (2% f_o:o f_ Zaj (2,7, t)el@T- w0 q7dt,
o o (2.2.8)
a;(z,7,t) = f f a;(z,q, w)e @m0 gdade.
Throughout the work, the Fourier transforms are only performed on the time domain variables
x,y and t, which transform to k,, k,, and w, respectively. That is because the z axis acts as the
optical axis and no momentum conservations are related to it in the analysis of the photon

source of the system. | note that the following useful expressions for the Dirac delta function

follow from the Fourier transform:

1 2
50 = (37)
The commutation relations between the ladder operators in the frequency domain are set
to be [22]:

oo ol 1 oo .
f eTdG,  5(0) =5 j eit dgy, (2.2.9)

[aj (er C_I)ll wl); al (ZZ; EI)Z' (‘)2)]
1 (2.2.10)
= W5j,k5(z1 —23)6(41 — G2)6(w1 — wy).

The corresponding commutation relations in the time domain are:
[&j(zl,ﬂ, t1), a;t(zzj”)z, tz)] = 0jx0(z1 — 2,)8(7 — 15)6(t; — t3). (2.2.11)
To describe how the wave functions and the operators change throughout an optical
system, the Heisenberg picture is used. In this picture, the operators are considered to evolve
along the system, while the wave function remains unchanged. Thus, when calculating
expectation values at a location of interest, the operators are plugged in after their propagation
to the location along with the wave function at the input of the system. A useful result derived

from the above is the vacuum expectation values of frequency domain operators at the same z:

JUpn At 1 .
(0|aj(q1,w1)a£(q2, w2)|0) = (ZT)?’Sj'ka(ql —q2)0(w; — wy),

N P s —
(Olaj (q1, w1) Ak (G, w2)|0> =0, (2.2.12)
(OlajT(Eh; w1)a1t(512»w2)|0> =0,
(0];(G1, w1)ax (G2, w)|0) = 0,
where §; ;. is the Kronecker delta. To use this to calculate expectation values at a desired point,

the operators at that location must be expressed via the operators at the input of the system, so

that they will have the same z as the operators inside the expression of the wave function.



2.3. X-Ray Biphotons Sources

Predominant sources used to generate indistinguishable photon pairs for experiments are
the process of spontaneous parametric down-conversion (SPDC) [32], atomic cascades and
quantum dots [8]. The latter is not available at x-ray wavelengths yet and will not be easy to
control. SPDC is a second order nonlinear process in which a photon interacts with the vacuum
field via a medium and is converted into two photons while energy and momentum are
conserved [32]. X-ray SPDC was proposed by Freund and Levine in 1969 [40] and observed
by a number of groups since 1971 [41], including ours [22,33].

Being a second order nonlinear process, SPDC involves two frequencies that combine to
create a third frequency. It originates from the interactions between a pump photon at frequency
wy, and the vacuum field fluctuations via a nonlinear medium. The interaction causes the pump
photon to be converted into two photons, denoted as the “signal” and the “idler”, at lower
frequencies w, and w;, respectively. The process is parametric thus energy is conserved in the
form:

hw, = hws + ho;. (2.3.1)

To obtain an efficient process in nonlinear optics the energy should be transferred

optimally from the pump to the desired generated fields. This can be done by maintaining the

momentum conservation, a condition called “phase matching”:

-

k, = ks + k. (2.3.2)
Here Ep, Es, and Ei are the wave vectors of the pump, signal, and idler, respectively. To
maintain the phase matching equation for a selected nonlinear process, specific refractive
indices are used for the waves, through material choices. Since refractive indices for x-rays are
near unity [38], it is not sufficient to use them for phase matching. Instead the reciprocal lattice
vectors are used as proposed by Freund and Levine [40], which is possible since the wave

vectors have the same order of magnitude. The phase matching equation becomes:
kp + G(hkl) = ks + k;, (2.3.3)
where G (hkl) is the reciprocal lattice vector corresponding to the Miller indices h, k, and L.
In the x-ray region, the interactions with the medium can be described classically by
using a free electron gas model for the electrons [40,41], which is justified since the energy of
the photons is much greater than the ionization energy of the electrons. The equations of motion

and continuity are:

-

v R e ,» . =
E-I- W-Vyv= _E(E + 7 X B), (2.3.4)
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Z—p + V- (pv) =0, (2.3.5)

where E is the electric field, B is the magnetic field, e and m are the electron charge and mass,
respectively, ¥ is the velocity of the electron and p is its charge density. The nonlinearity has
contributions from three processes: the spatial variation of the velocity, the Lorentz Force and

the spatial modulation of the charge density.

By using the perturbation theory for the free electron gas model, the envelope of the
nonlinear current density is found to be [29]:
N e?pywsE, Ef

’ Am*wjwiw? (2.3.6)

X [wiw, (G - &5)(8, - &) — wsw; (G - &,)(&; - &) + wsw, (G - &) (8, - &)]-
Here E, and E; are the amplitudes of the pump and idler, respectively, é,,é;, and é; are the
polarization unit vectors of the pump, signal, and idler, respectively, and p, is the Fourier
component of the charge density for the corresponding reciprocal lattice vector. When the angle
between the pump and the signal and idler is approximately straight, the second term in the
nonlinear current density becomes the dominant term and the expression becomes:

e ng E!
4m2a) w;

NL _
N

(G- 8,) (@ - &) (2.3.7)

For the term to not nullify, we see that the pump polarization must be inside the scattering

plane, since G is in the scattering plane.

By choosing a pump polarization inside the scattering plane and a nearly straight angle
between the pump and both biphotons, as suggested by Borodin et al. in [33], the background
noise caused by Bragg and Compton scattering is suppressed. This occurs since for photon
energies above the electron binding energies, the cross section of these scattering processes is
approximately the Thomson cross section, which approaches zero when viewed in the
mentioned conditions. This choice requires the biphotons to be nearly parallel, and together
with the choice of having identical biphoton frequencies, the solution of the phase matching
condition is that the biphotons are very close to the Bragg angle. This poses no problem as
Bragg scattering is suppressed, as mentioned.

Another useful result is that when transmission (Laue) geometry is used, a relative
improvement of over an order of magnitude in the SNR is achieved [22]. The overall setup of
the nonlinear crystal under the mentioned conditions can be seen in Fig. 3, where the z axis is

set in the direction parallel to the lattice planes.

11



G (hkl)

FIG. 3. (a) Schematic diagram of the nonlinear crystal in transmission geometry. k,, ks, and

E are the wave vectors of the pump, signal, and idler, respectively, 5(hkl) is the reciprocal
lattice vector corresponding to the Miller indices h, k, and I, which is orthogonal to the lattice
planes represented by the dashed lines. The polarization unit vector of the pump, é,, is inside
the scattering plane, and the angle between the pump and the generated biphotons is

approximately straight. (b) The phase matching scheme.

The radiation propagating through the nonlinear crystal is described classically by
Maxwell's equations and a wave equation is required for each of the pump, signal and idler
frequencies. Each equation is Fourier transformed from (z,x,y,t) to (z,ky, ky, w), and the
source term of these inhomogeneous equations, representing the nonlinearity, is the previously
found nonlinear current density.

Since SPDC is a very inefficient process, the “undepleted pump approximation” is
assumed, which states that the pump field remains constant and removes the need in the pump
equation. Losses are inherent to x-ray wavelengths, but the loss terms were neglected on
account of the materials being shorter than the absorption length for the parameters in this
work. The “slowly varying envelope approximation” is also assumed, which applies when the
envelope of a wave varies slowly in time and space compared to the wavelength and allows
neglecting successive derivatives. For example:

0%E 0E | 0%E
0x2 *ox|’

<
0z2
Next, the wave equations are quantized to obtain a quantum description in the Heisenberg

0E

& |k P

, |%| < |w]|. (2.3.8)

picture, by substituting the field envelope with a ladder operator. Their commutation relations

in the frequency domain are given by [22]:

[ (21, d1, w1), 81 (23, Ga, 5)] (2.3.9)

12



= WSj,kS(Zl —23) - 6(G1 — G2)6(wy — wy),

with g = (kx, ky), and the relation between the real and frequency domain ladder operators is:
aj(z,7,t) = f f 8;(z, 4, w)e I YdGdw. (2.3.10)

Consequently, the generation of the biphotons in the nonlinear crystal is described by the
following frequency domain coupled equations for the signal and idler envelope ladder
operators in the Heisenberg picture for a lossless medium [22,33]:

( da

— et oidk,
o — K'al- elAk z
a4t . (2.3.11)
i = k*a e—iAkZz
0z s

Here k is a coupling coefficient and Ak, is the phase mismatch in the z direction: Ak, =
ky cos(8,) — ks cos(6s) — k; cos(8,). 6,, 85, and 6; are the angles between the lattice plane

and the wave vector of the pump, signal, and idler, respectively.

13



2.4. X-Ray Interferometry
X-rays are challenging to manipulate, as their refractive indices are roughly equal to
one [38], which causes them to stay in nearly the same direction when they enter media. The
refractive indices are commonly notated as:
n(w) =1-6(w) + if(w), (2.4.1)
with §, f « 1. The absorption length in this regime in terms of the above quantities is given

by:

A

labsorption = H (24.2)

This quantity can achieve relatively small values, for example 150 um for silicon at a photon
energy of 10.5 keV, which also poses a challenge and must be considered when designing
optical devices.

Interferometry between the x-ray photon pairs can be performed with different setups
and types of devices, where the three commonly used mechanisms are total external reflection,
Bragg devices made of single crystals and multilayer devices [38,39].

Since their refractive index is smaller than one, when x-rays are incident on materials
from the vacuum, they experience total external reflection at incidence angles below a critical
angle:

0, =26, (2.4.3)
where the angle is measured from the interface. Unfortunately, these angles are very small, for
example 0.17 degrees for silicon at a photon energy of 10.5 keV. This limits greatly the required
angels of the generated biphotons and the entrance angles of the other devices, which are not
always available, making the mechanism less useful for our goal relative to the other two.

Bragg devices are based on the ability to utilize Bragg diffraction in this regime. Their
downside is their relatively narrow bandwidths, for an example of several eVs for silicon at the
lowest allowed reflection, while the bandwidths of SPDC photons reach an order of magnitude
of several keVs. This lowers the coincidence count rate and narrows the dip curve. An
additional issue is the inability to design devices for every photon energy and direction
combination easily, and usually at all. Especially, it is impossible to find scattering planes for
very small angles such as the ones arising when working with nearly collinear biphotons. Both
of these issues are overcome by using multilayers [38].

Multilayer devices are composed of alternating layers of two materials with different
refractive indices, which are deposited on a substrate. Scattering occurs at the boundary

between every two layers due to the variation in the density of the scatterers. To maximize the
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variation, a material with a high atomic number and a material with a low atomic number are
chosen. These are commonly referred to as the “absorber” and “spacer”, respectively, and their
widths are indicated by d, and d. A ratio factor is defined as I = d,/d, with d being the
width of the bilayers. The refractive indices and material lengths can be tailored to achieve
adjustable optical properties, such as a specific reflectivity and transmission for desired photon
energies and incidence angles, creating nearly ideal 50:50 beam splitters and mirrors. A

schematic diagram of a multilayer device can be seen in Fig. 4:

FIG. 4. Schematic diagram of a multilayer device.
The device is composed of alternating layers of a

material with a high atomic number and a material

with a low atomic number, denoted as the “absorber”

and the “spacer”, respectively, which are deposited

Agsorber 1 Za on a substrate. @ is the angle of incidence, and d,, and
pacer _

’ d, are the widths of the absorber and spacer layers,
Substrate respectively.

Radiation with wavelength A can be diverted by the system by attaining constructive
interference between the waves reflected from the bilayers. Similar to Bragg diffraction,
constructive interference occurs when the phase difference acquired between consecutive
bilayers is equal to an integer multiple of the wavelength [38]:

2d sin(6) = m4, (2.4.9)
where 6 is measured from the surface, and m is a positive integer.

A more precise condition for constructive interference can be found by taking into

account the refraction that occurs when the radiation propagates between the layers [39]:

s, +(1—I)8;
sin2(0) B

2d sin(0) \/1 -2 (2.4.5)

Here 1 — 6, and 1 — &, are the real parts of the refractive indices of the absorber and the spacer,
respectively. This formula can be used to find the necessary width of the bilayers for a specific

wavelength and incidence angle.
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By using the recursive theory of multilayers [42], an analytical expression for the
intensity reflectivity of N bilayers can be obtained, where the incident angle is equal to the
Bragg angle and the refractions and the reflections from the substrate are negligible [39]:

R = tanh?[2Nrsin(mmI)]. (2.4.6)
Here r is the amplitude reflectivity of the interface between the absorber and the spacer. From
this expression, the required number of bilayers for 100% and 50% reflectivity can be
calculated, which allows creating an ideal mirror and beam splitter. Notice that the intensity
reflectivity is maximal when mI is a semi-integer. Also, notice that this formula only provides
the reflectivity for a specific wavelength at a specific angle, while SPDC photons contain many
frequencies and angles.

For given multilayer parameters, the reflectivity and the transmission of a device as a
function of the photon frequency and incidence angle can be found by a numerical calculation,
based on the multilayer matrix theory approach [43]. Every device is divided into a stack of
adjacent subsystems, such as layers and boundaries, and every subsystem is described by a
transfer matrix relating the complex wave amplitudes at both of its sides. The individual
matrices are then multiplied to find the total transfer matrix of the entire stack. A quantum
transfer matrix can be obtained from the classical one by means of the quantization procedure

described earlier.
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2.5. Photodetectors

Photons can be detected via the photoelectric effect, wherein photons incident on a
material ionize its electrons if their energies are higher than the binding energies of the
electrons. The released photoelectrons can then be amplified and detected. Due to the relatively
high energies of x-ray photons, single photon counters have very low noise and high quantum
efficiency, which is advantageous for quantum optics.

In order to demonstrate the HOM effect, the detection of interest is the measurement of
the coincidence count rate between the two output ports of the beam splitter. To calculate it
analytically for a given optical system, it is useful to first calculate the second order correlation
function. Then the second order correlation function can be integrated over the parameters of
the detectors to obtain the rate.

Following the photodetection theory of Glauber [44], the second order correlation
function in the framework of this work is given by:

GA (7, 1, 7o, ty) = (Pla) (7, tz)a;; (71, t)ax (4, t1) ay (7, t2) |P). (25.1)
Here the subscripts "X" and "Y" denote two different detectors, which are positioned at the two
different outputs of the final device in the system, 7 = (x, y), and the detectors are assumed to
be at the same z, so the z-dependence is not written explicitly. It has the physical meaning of
the flux of detecting one photon at detector X at (74, t;), while detecting one photon at detector

Y at (7, t,). Its units are therefore the units of flux squared:

[G(Z)(71,t1.72,t2)] = (2.5.2)

m* . s?
By integrating G®® over the area of a detector and its detection window, the rate of
detecting coincident photons at two detectors can be calculated. The coincidence count rate for

two detectors is given by:
Rc=S J j G (P, ty, Ty, t,)dudr, (2.5.3)

where S is the area of the input beam on the source crystal which generates the two photons,
u=r1,—1 is the distance between the detection points, and 7 = t, —t; is the duration

between the detections. Its units are of rate:

[Rc] = % (2.5.4)
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3. Procedures

In this section | present the steps | have taken in order to design an optical system that
demonstrates the HOM effect and to show that sub-attosecond delays and sub-Angstrom
optical path differences can be measured with it. The steps can be divided into four stages:
designing the system schematically, modeling the devices, calculating the coincidence count
rate at the outputs of the source and of the entire system and simulating the devices and the

entire system for example parameters using Mathematica.

3.1. System Design

In the first stage, | design the optical system schematically. This is done by selecting the
optical devices comprising the system, while only considering their general function and
disregarding their specific parameters, such as material compositions and widths. For example,
I choose devices that produce biphotons with general desired properties, change their properties
in a desired manner and detect them.
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3.2. Device Modeling

In the second stage, | first model the devices physically. This is done by selecting the
classical physical entities which constitute each of the devices. For example, selecting the free
electron gas model for the SPDC source.

Next, | model the devices mathematically. This is done by selecting the mathematical
description of each device which corresponds to its physical model, in the sense that the same
physical entity can be described by different mathematical models. For example, writing the
classical equations of motion of the electrons constituting the SPDC source.

Next, | represent each device by a transfer relation, which is a relation between the
physical quantities of interest at the outputs and at the inputs of the device. This is done by
calculating the desired relations from the mathematical model. For example, | calculate the
transfer matrix relating the complex field amplitudes at the two outputs of the beam splitter to
the amplitudes at its two inputs.

Finally, | represent each device by a quantum transfer relation, which is a relation
between the ladder operators at the outputs and at the inputs of the devices. This is done by
using the quantization procedure described earlier, which can be performed at different points
during the steps for convenience. For example, | can first quantize the classical equations and
then find the transfer matrix in terms of the ladder operators. Alternatively, | can take a transfer
matrix that relates the complex amplitudes of the electric fields, which is obtained from the
classical model, and consider it valid for the quantum case, since the ladder operators are

proportional to the complex amplitudes.
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3.3. Coincidence Count Rate Calculation

In the third stage, | first calculate the ladder operators at the output of the SPDC source
and express them in terms of the operators at its input. This is done by using the quantum
transfer relation representing the device. It allows calculating expectation values of interest in
the Heisenberg picture at the output of the system, and when all of the operators inside an
expectation value are at the same z, the vacuum expectation values described by Eqg. (2.2.12)
can be used.

Next, | calculate the second order correlation function at the output of the SPDC source
in the Heisenberg picture. This is done by plugging the ladder operators at the output of the
source along with the wave function at the input of the source into Eq. (2.5.1). | proceed to
move between the real and frequency domains when needed by using Fourier transforms and
then I simplify the expression analytically as much as possible. | do so by looking at the general
term in the expectation value and finding which terms nullify, using the vacuum expectation
values presented in Eq. (2.2.12), integrating the resulting expression while using the properties
of the delta function and finally organizing the expression.

Next, I calculate the coincidence count rate at the output of the SPDC source. This is
done by plugging the second order correlation function into Eq. (2.5.3). | proceed to simplify
the expression analytically as much as possible by integrating it and using the definition of the
delta function. The resulting expression for the coincidence count rate depends on the
parameters of the device.

Next, | calculate the coincidence count rate at the output of the HOM system. This is
done by repeating the steps taken to calculate the coincidence count rate at the output of the
SPDC source.

Finally, I calculate the expression for the probability amplitude in the wave function
representation of the SPDC source. This is done be comparing two expressions for the
coincidence count rate of a system containing only an SPDC source. The first expression is the
rate that is found when considering the SPDC source alone, and the second is the rate that is
found when considering the entire HOM system while removing all of the devices except the
source, by appropriate substitutions. For example, the transfer matrix representing the beam

splitter is replaced by a unit matrix.
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3.4. Simulations

In the last stage, | first specify an example system. This is done by selecting and
calculating specific material parameters for the optical devices, which fit the design goals and
reflect realistic device properties. For example, | find the width of the multilayer bilayers for
the wavelength and incidence angle of the signal field at phase matching by using Eq. (2.4.5).
To estimate the required number of bilayers for 100% and 50% reflectivity, thus creating an
ideal mirror and beam splitter, | use Eq. (2.4.6).

Next, | calculate the coincidence count rate numerically for the example system. This is
done by plugging the specific parameters into the general expression of the coincidence count
rate and integrating it numerically using Mathematica.

Finally, I exhibit the HOM dip by plotting the coincidence count rate versus the delay
between the biphotons.
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4. Outcomes

In this section | present the outcomes of my work, showing how | have successfully
designed an optical system that exhibits the x-ray HOM effect and allows the measurement of
sub-attosecond delays and sub-Angstrom optical path differences. | start by presenting the
schematic design I chose for the optical system, then | present the models of the optical devices
comprising it, then | present how I calculated the coincidence count rate at the output of the
source and the HOM system, and finally | present the simulations I performed for an example

system and the HOM dip resulting from the design choices.

4.1. System Design

I now present the schematic design | have chosen for the optical system, which
demonstrates the HOM effect in the x-ray regime while dealing with the different design
obstacles.

When | chose the optical devices comprising the system, | had to overcome several main
challenges. The source had to produce indistinguishable broadband x-ray photon pairs and have
a suppressed background noise. In addition, to work in the x-ray regime, where the refractive
index is approximately one and the absorption length can reach tens of nanometers, the
interferometer had to be able to divert the photons and be narrower than the absorption length.
Finally, the interferometer had to accommodate the wide bandwidth and angular distribution
of the source, which was based on SPDC.

The proposed optical system is comprised of a biphoton source, a phase shifter, two
mirrors, a beam splitter and two detectors. The biphotons source is based on SPDC and
generates indistinguishable photon pairs, one of which passes through a phase shifter, which
creates a delay between the biphotons. The biphotons are then redirected by multilayer mirrors
into a multilayer beam splitter, and finally they are detected by two photodetectors, found at
the outputs of the beam splitter. The Bragg angles of the multilayer devices match the
separation angle of the biphotons, so the setup forms a parallelogram shape which allows the
biphotons to arrive simultaneously to the beam splitter when the delay is zero. This can be seen

in Fig. 5:
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FIG. 5. Schematic diagram of the proposed experimental system. The pump photons are down-
converted in a nonlinear crystal (NLC) into signal and idler photon pairs and the idler photon
propagates through a phase shifter (PS). The biphotons are then reflected by their

corresponding multilayer mirrors (M; and Ms) into a beam splitter (BS) and the coincidence

count rate at its output is measured by two detectors (D1 and D).
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4.2. Device Modeling

I now describe how the optical devices composing the HOM system were modeled
physically and mathematically. The model of the SPDC source is presented first, then the phase
shifter, then the multilayer beam splitter and mirrors, and finally | present the model of the

photodetectors.

4.2.1. SPDC Source Model
| physically modeled the nonlinear crystal which constitutes the SPDC using the free
electron gas model.
As shown earlier, the resulting mathematical model is a set of Heisenberg coupled
equations for the signal and idler ladder operators in the frequency domain:
( da

P — K&;l'eiAkzz

e . 4.2.1)
a; — K*ase—mkzz

0z

Based on this model, | calculated two mathematical models of the source, for
convenience in the analytical calculations. These models are related and are expressed one in
terms of the other in section 4.3.5. The first representation is the transfer matrix representation,
which relates the ladder operators at the input and output ports of the source by a matrix. It was
used in the calculation of the coincidence count at its output. The second representation of the
source is the wave function representation, which describes the output of the source by a
superposition of the vacuum state and the biphoton state. It was used in the calculation of the
coincidence count of the entire HOM system.

| have denoted the general form of the transfer matrix by:

as(qs, ws) A(Gs, ws)  B(Gs, ws)\ [Aso(ds ws)

(ai*(ﬁi.wi)) = (et DL w) (a;)(ai,wi))' “22)
where d@;, and d; the frequency domain ladder operators corresponding to mode j before and
after the device, respectively, and A, B, C and D are the coefficients relating the output to the
input. Notice that the frequency dependencies of the operators of each of the fields are different
and that the z-dependence is not written explicitly, since both of the input and output ports are
at the same z.

To calculate the transfer matrix from the coupled equations, | began by assuming the
conversion rate of the pump photons to signal and idler biphotons is very low, and thus the

change of the operators depending on space is small. That allowed me to set a,; = d;(0):
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aas — Kﬁj (O)eiAkZZ

oz . (4.2.3)

kaal’ = K*a (O)e—iAkZZ
0z s

Integrating the coupled equations and plugging in the boundary conditions resulted in the

following integration constants:

gidkzz Ka'l’ 0
4D = KA O 4 Gy = a5(0) — D
idk, idk,
: . (4.2.4)
1) = Ot Gy Co=al0) + =D
(B Z A T, TR M ik,
Performing some algebraic manipulations led to the following expressions:
R R Wkpzz  (Akyz\ 4
as(z) = ag(0) + 2xe” 2 Esmc( > )ai (0)
(4.2.5)

idkzz 7 (Akzz

&;r(z) = 2Kk*e 2 Esinc )ds(O) + &ZF(O)

where sinc(x) = sin(x) /x.
I moved into a matrix form and plugged in z = L to acquire the transfer matrix:

idkyz . AkZZ
<ds(z)> 1 Kze 2 smc( > > (&S(O)

_ ! (0)>, (4.2.6)

,\T iAk,z Ak, z
4 (2) K*ze 2 sinc (—Z) 1
2
therefore:
iAk,L Ak, L
1 B 1 klLe 2 sinc( )
( ) = . (4.2.7)
C D _idk,L

1

 (Ak,L
K*Le 2 smc( >

This result matches the expectation of a small deviation from the initial value, which is
expected since: k <« 1, which causes a small deviation from the initial value.

Modeling the source with an output wave function was done by the following general
expression, which contains a superposition of the vacuum state and the biphoton state:

|lP>Source = C|0> + j dqsdwsd‘_jidwif(ﬁw Ws, q)i' wi)a:ls-(‘_jsr ws)aj(‘_jirwi)l())- (4-2-8)

Here d;r(ﬁj, w;) is the creation operator of photon j in mode (§;, w;) and the z-dependence is
not written explicitly again. € and f (g, ws, g;, w;) are the probability amplitudes to detect the
vacuum state and the frequency domain biphoton state, respectively. |[C|?> and

|f (G5, ws, G;, w;)|? are thus the probability to detect the vacuum state and the biphoton
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probability density to detect a signal with the properties g and w, and an idler with g; and w;,
respectively. As SPDC is very inefficient, |C|? > [ dGsdwsdG;dw;|f (Gs, ws, Gi, ;) |?.

| have denoted the biphoton wave function by:

) aipnotans = | disdwsddidanf s, w4 G0 08 o 00 G w)I0).  429)
As mentioned, the biphotons conserve energy:
hw, = hws + hw;, (4.2.10)
and conserve momentum in the x and y directions:
G +G = s + G- (4.2.11)
These conservations were incorporated by writing:
f (o w5, G 0)) = (G5, )6 (G — (G + G = G5)) 8 (w; — (wp — w5)).  (4.2.12)
Plugging this expression into the state and integrating over the idler variables resulted in the
following final form:

|Lp)Biphotons =
- - ,\-l- "1- (4.2.13)
f dgdwe(q, w)al (ky, ky, w)a;! (kyy — Gy — ky, —ky, 0, — @)]0).
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4.2.2. Phase Shifter Model

| physically modeled the phase shifter as composed of a homogeneous isotropic linear
lossless dielectric material. When such a material is placed in the path of the idler photon, the
optical paths of the signal and the idler are no longer equal, and thus a delay is introduced
between the biphotons.

Delaying a wave is described classically by the addition of an appropriate phase to it.
Therefore, | represented the phase shifter mathematically using the following transformation,
which is the common approach [32]:

&l (ky, ky, @) > @l (ky, ey w)e ™7, (4.2.14)
Here @ and a}. are the frequency domain idler creation operators before and after the device,

respectively, and T is the duration of the delay between the biphotons.
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4.2.3. Multilayer Optical Devices Model

| physically modeled the multilayer mirrors and the multilayer beam splitter as composed
of homogeneous isotropic linear lossless dielectric layers.

For their mathematical representation, | used a transfer matrix that relates their input and
output ladder operators. To find it, I first used the multilayer matrix theory [43] to calculate
their classical transfer matrices, which relate the complex field amplitudes at their inputs and
outputs, and then | used the aforementioned quantization procedure to obtain the quantum
transfer matrix.

To find the classical transfer matrix of a device, | divided it into a stack of adjacent
subsystems, such as layers and boundaries, and described every subsystem by its own transfer
matrix. The multilayer devices comprise of N spacer-absorber bilayers which are deposited on
a substrate. Therefore, the subsystems were as follows: The environment in which the
multilayer is found, the boundary between the environment and the top-most absorber layer,
the absorber layer, the boundary between the absorber and the spacer underneath it, the spacer
layer, the boundary between the spacer and the absorber underneath it, the boundary between
the lowest spacer and the substrate, the substrate layer, the boundary between the substrate and
the environment underneath it, and finally the bottom environment.

The propagation of radiation through a homogeneous layer causes a phase shift, and was

described by:

einkdcos(B) 0
( 0 einkdcos(9)>’ (4.2.15)

where n is the refractive index, k is the wave number, d is the width of the layer, and 6 is the
propagation angle, measured from the optical axis.
The passage of the radiation through a boundary between two media was described using

Fresnel’s laws. For S polarization I used:

1 2n, cos(6,) n, cos(6,) — n, cos(6,)
, (4.2.16)

ny cos(60,) + n, cos(8,) \n, cos(6,) — n, cos(6;) 2n, cos(0,)
where n; and n, are the refractive indices of the top and the bottom material, respectively, and
6, and 6, are the radiation propagation angles relative to the optical axis, respectively, which
are related by Snell’s law.

| used Mathematica to multiply the transfer matrices of all the subsystems according to
the multilayer matrix theory, and the resulting transfer relation is presented here in symbolic

shorthand notation. Upon calculating the total classical transfer matrix, the quantum transfer
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matrix was readily given by the same expression, since in the quantization procedure the field
amplitudes are proportional to the ladder operators.
The transfer relation representing the mirrors using their amplitude reflectivity was
denoted as follows:
{a1 (kx by, ) = Mi(—ky, ky, )8 (—ky, ky, 0) (4.2.47)
ay(—ky, ky, ) = My (ky, ky, 0)asr(Ky, Ky @)
where d, and @, are the frequency domain destruction operators at the output of the signal and
idler mirror, respectively, d,r and @, are the destruction operators of the signal and the idler
at the entrance of the mirrors, respectively, M, and M; are the amplitude reflectivity of the
signal and idler mirrors, respectively. The directions of the wavevector components express
the flipping of the x component of the wavevector by the mirrors.
The beam splitter was represented via a transfer matrix relating the frequency domain
destruction operators at its input and output ports, which was denoted by:
as(—ky, ky, @) E(ky ky, ) F(=kygky @)\ /[ @1k ky )
< ay(ky ky, ) > B (G(kx, ky,w) H(—ky ky, w)) (&2(—kx,ky,a)))' (4.2.18)
Here a5 and a, are the frequency domain destruction operators at the output ports of the beam
splitter, @, and @, are the destruction operators at the input ports of the beam splitter, and E,
F, G and H are the amplitude reflectivity and transmission coefficients relating the output to

the input.
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4.2.4. Photodetectors Model

| physically modeled the two photodetectors as having a rectangular shape, having a
detection time window with an order of magnitude of 100 ns, and being able to detect x-ray
photons with an ideal detection efficiency.

I modeled them mathematically by the previously mentioned coincidence count rate
formula, which describes the result of their interaction with x-ray biphotons in a coincidence

measurement:

Rc=S f f G@ (7, t,, 7, t,)dudr. (4.2.19)
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4.3. Coincidence Count Rate Calculation

I now present the analytical calculations of the coincidence count rates at the output of
the SPDC source and of the entire HOM system. In the calculations, the most general
mathematical representations of the optical devices were used, in order to acquire a symbolic
expression for the rate in terms of the parameters representing the devices.

To perform the calculation for a given system, | first found the ladder operators at its
output expressed by the operators at its input, in order to work in the Heisenberg picture. Then
| calculated the second order correlation function, and finally | integrated the correlation
function over the parameters of a detector positioned at the output of the system, to obtain the

coincidence count rate.

4.3.1. SPDC Source Coincidence Count Rate

| began with the calculation of the coincidence count rate at the output of the SPDC
source. This expands upon previous similar calculations by the use of the aforementioned
quantization formalism and the inclusion of the spatial dependence of the ladder operators. The
result is used in section 4.3.5. to find the probability amplitude of the wave function
representation of the source, which is used in turn to find the coincidence count rate of the
entire HOM system.

To calculate the coincidence count rate, the second order correlation function was found
first:

GO, ty, P ty) = (Lp|a;;(72, tz)d; (1, t)ax (7, t1) ay (7, t2) |P). (4.3.1)

Plugging in the wave function at the input of the source, where the signal and idler fields are
at the vacuum state, and using the Fourier transforms of the time domain ladder operators, led

to:
G@ = f d§,dd,ddzdd,dw,dw,dwsdw,
X eid1=Ga) T2 p—i(w1 - w4tz pi(G2=G3) T1 g —i(wW2—W3)ty (4.3.2)
X (0|alT (G, 001)@;r (G2, w2)A5(G3, w3)8;(Gs, w4)|0).
To calculate the expectation value at the entrance of the system, by having all of the
operators at the same z, | plugged in the expression of the SPDC output ladder operators in

terms of the input operators, which are given by the transfer matrix representation of the SPDC

source:
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G@® = f dg,dw,dG,dw,dGzdwsdd,dw,
x etl@1=44) 72—~ (G3~G2) T1] g —il(w1~wa)t2— (W3- w2)t4]
x (0] [C(ﬁp +G— G, wp— wl)aso (ﬁp +5—61,a)p - wl)
+D((_jp +G - G1, wp — a)l)ajo(c_il: (Ul)] (4.3.3)
X [A*(ﬁz'wz)a:o(ﬁz» w,) + B*(ﬁz'wz)aio(ﬁp + 5 - ‘72: Wy — wz)]
X [A@& w3)aso(‘73'w3) + 3@3' w3)a;ro(‘7p + 5 - 573' Wy — ws)]
e [C*(ﬁp +G = qa, Wp — “)4)&:0(‘717 +G — qa, Wp — w,)
+D*(C7p +G - Gar Wy — a)4)c'iio(§4, a)4)]|0).
The next step was calculating the vacuum expectation value, by finding which of its 16

terms do not nullify. The general form of the terms without the coefficients and the frequency
dependencies is:

(0l(aso or aly)(al, or ay)(aso or aly)(al, or ay)l0). (4.3.4)
Only two terms remained in the expectation value, those with the form (OlasodiodjodIOIO) and
(01085080 10).
Plugging the expectation value back into G with the coefficients and the frequency

dependencies, and then performing the vacuum expectation values, led to:
G@ = f dg,dw,dG,dw,dGzdwsdd,dw,
X ei[((_l)l—(_jz;)"_}z—((73—62)'71]e—i[(w1—w4)t2—((v3—w2)t1]
X [C(ﬁp +G - G, Wy — wl)B*(‘_erwZ)
X B(q3, w3)C*(‘?p +G - Ga Wp — ‘U4)
1 - 2 > > ~ -
X W650,506 ((Qp +G— ql) - (Qp +G - Q4))
X8 ((wp — a)l) — (wp — w4))
1 > 2 - > ~ -
X W&'o,iﬁ ((Qp +G— QZ) - (Qp +G— %))
X O ((a)p — wz) — (a)p — w3))

+C(‘?p + 5 - 511» Wy — w1)A*(512, w>)

(4.3.5)

x A(Gs, wB)C*(‘?p +G— Gar wp — w4)
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X ﬁ‘gso,sofg (‘?3 - ((_jp +G— 674)) 8 (a)3 - (wP - w4))

1 s > "
X W550'506 ((qp + G- ‘h) - qz) 6 ((wp - 0)1) - wz)]-
| integrated over dg;dwsdq,dw, in the first term and over dg,dw,dg,dw, in the

second term, and used the properties of the delta function to finally arrive to the following
expression:

G@

1 q qJ ] pd ~ - 2
- (27-[)6 f dQldw1dq2da)2|B(qz,w2)|2|C(qp +G — Gy, 0, — “)1)|

( )6 .f dqldwldq3dwge‘(Q1+q3 Qp G) (y—T4) —L(w1+w3 wp)(tz—f1) (436)
2
X A*(C_I)p +G - G1, wp — 0)1)A(EI)3,0)3)C(C_I)p +G - 41, wp — w1)C*(§3, w3).
Next, | turned to calculating the coincidence count rate, given by:
RC(Fll tlﬂFZI tz) = S-]- f G(Z) (Flf tll Fz, tz)dﬁd‘[ (437)

Two terms exist. The term that does not depend on u and 7 is called the classical term, and it
originates from accidental detection of signal and idler photons that arrive to the detectors
during the detection time window. | assumed the classical term is negligible since the detection

window is short enough. The rate caused by the other term, called the quantum term, is:

Reuaneum = g [ dideddsdandisdos

% ei((71+(73 —Gp—G) (% —rl)e—i(w1+w3—wp)(t2—t1)

(4.3.8)
X A*(C_I)p +G— G1, wp — 0)1) A(G3, w3)
x C(Gp, + G — G, Wy — 01)C* ({3, w3).
| assumed the integration time of the detector is much longer than the biphoton
correlation time, with an order of magnitude of 100 ns versus an order of magnitude of 1 as,
thus the integration limits can be considered as infinite. Integrating over dudrt and using the
definition of the delta function led to:

S . 5
R¢ ouantum = WJ dg,dw,dqzdws
X (2m)%8(Gy + Gz — Gp — 5)2n6(w1 + w3 — wp)
X A*(Elp +G - G1, Wy — w1) A(G3, w3)

X C(q)p + 5 - C_ill (Up - wl)C*(Eig, (1)3).

(4.3.9)
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Finally, | integrated over dg;dws, and after changing variables from ¢, + G — 4, to 4,

and from w, — w; t0 w; and removing the subscript notation “1”, the rate was found to be:

S N 5 o
Requantum = o33 f dddwlA®, ©)C* (G o) (4.3.10)
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4.3.2. HOM System Output Ladder Operators

| proceeded to calculate the coincidence count rate in the Heisenberg picture, using the
wave function at the input of the system, and the operators at the output of the system, after
their propagation through it. | started by expressing the output operators via the input operators,
which allowed me to calculate expectation values easier later, by knowing all of the operators
at the same z.

Starting at the output of the system, the destruction operators in time domain after the
beam splitter are:

as(#t) = f 45 (4, w)e @T-2qad ey,
(4.3.11)
a,F,t) = f a,(G, w)e @ T -0 dg de",

I moved into the frequency domain using the Fourier transform, since the transfer matrix
representing the beam splitter is known in the frequency domain.

Plugging in the transfer relations of the beam splitter, as denoted by Eq. (4.2.18), gave
me the output operators expressed by the operators after the mirrors:

Gy 1) = f [E(—ky, ky» 0)as (—k ;@)

+ F(ky, ky, 0)a,(ky, ky, 0)]e @790 dGdew,
( Xy ) 2( Xy )] (4.3.12)

a,(F,0) = f 6(ke by )iy (ki Ky, @)
+ H(=k k), 0)8y(—ky ky, w0)]e 8@ T =04 G dw.
Similarly, plugging in the input-output relations of the mirror, as denoted by Eq. (4.2.17),
gave me the output operators expressed by the operators after the phase shifter:
as(7,t)
- j [E(=kp ey 0)M; (K, Ky ) ir (s ey )

+ F(er ky' w)Ms(_kx' ky' w)asT(_kx' ky' (‘))]e—i(a?_wt)dédw'
(4.3.13)
a,(#,t)
- f [G (ki Ky, 0 )Mi(=ky ' ky, 0)air (ks by, @)
+ H(=k k' 0 )M (ki Ky 0)asr (ko Ky ) |e 8@ T =900 d g dw,
Finally, plugging in the transformation of the phase shifter, given by Eq. (4.2.14), gave
the output operators expressed by the operators after the SPDC source:

35



a3 (F, t)
- f [E(=ky, ey, )My (s Ky, )3 (Fex, Ky 0)e ™

+Flk, ky,w)M -k, , k, w)a.(—k,, k,, e‘i(a'F_“’t)dﬁdw,
(x y ) s( xRy )s( x by )] (4.3.14)
a, (7, t)

- J. [G(k'x\, ky\' w\)Mi(_kx\’ ky\, w\)di(_kx\, ky\: (U\)e_i("\T

+ H(—ky k), 0 )Ms(ky ' Ky, ) s (ko Ky, @) ]e 8@ T =90 d G dw.
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4.3.3. HOM System Second Order Correlation Function
Having found the output operators, | calculated the second order correlation function:
GCD(Fy, ty, o, ;) = (Pla) (R, 1) A% (7, 1) Ay (7, 1) Ay (B, 1) |P). (4.3.15)
| plugged in the input wave function, given by Eq. (4.2.13), and the output operators in terms
of the input operators, given by Eq. (4.3.14), and denoted the different frequency variables with

the subscripts 1-6, according to their order of appearance:
¢ = (0] f dGdw 9" (G, w1)
X ai(kpx — Gy — K1y, —k1y, 0y — wl)as(klx: kiy, w1)
x f (6% (Kas Kays 02)M; (—Kas, Koy 02)a8 (=K, Ky 7)€ 12T

+H* (=Ko, Koy 02 )MZ (Kaox, Koy, 02) 88 (Ko, Koy 03) e 270282 d G, dw,

X f [E*(—ksx, ksy 03)M; (Kay, kay, w3) @] (Kax, kzy w3)et@sT

+F*(k3x, k3y, (U3)M;(_k3x, k3y, w3)ﬁg(—k3x, k3y, 0)3)]ei(ﬁ3‘?1_w3t1)d673dw3
(4.3.16)

8 j[E(_k‘“" Kay, w4)Mi(k4x; Kay, a)4)€li(k4x, kay, 0)4)e_i“’4T

+F(k4x, k4y, (U4)Ms(_k4x, k4_y, w4)as(_k4x, k4,y, a)4)]e_i(’74'F1_w4t1)dC_[)4dw4

% ][G(ka’ ksy, ws)Mi(—ksy, ksy, ws)a;(—ksy, ksy, ws)e™sT

+H(—k5x, ksy, ws)MS(ka, ksy, ws)as(k5x, ksy, ws)]e—i((_])5-172—w5t2)dq’5dw5

X J ddsdwe®*(Gs, we)

X A5 (koxr koyr 06) a5 (Kpx — Gy — kox —key, 0, — wg)|0)
In addition, I changed the form of the exponents to separate the space and time

dependencies:

ei(ﬁz'Fz—wztz)ei(ﬁa'771—w3t1)e—l'((74'7'1—w4f1)e—i(als'fz—wstz)

] ) (4.3.17)
— ei[((ka,kzy)—(ksx.ksy))'rz—((k4x;k4—y)_(k3x’k3y))'rl] e—i[(wz—ws)tz—(w4—w3)t1]

Next, | gathered the integrals and the exponents outside of the expectation value and
looked at the general term in the expectation value to find which terms nullify and which

remain. The general term has the following form:
(0la,a,(al or al)(al or al)(a, or a)) (@ or a)alal|o), (4.3.18)

and only 4 terms remained:
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(0la,a,(alala,a;)alaf|0) + (0la,a,(alafa,a,)alaf|o)

+(0la;a,(atala,a;)alal |0y + (0la,a,(al ata;a,)atal|o). 4319
Or explicitly, the expectation value EV is:
EV
= H*(—k2x, ky, a)z)M;(ka, ksy, a)z)E*(—k3x, ks, wg)Ml-* (k3x, ksy, wg)ei“’3T
X F(kyy, kay, w4) Mg (—k4x, Kay, 04)G (ksy, ksy, s )M;(—ksy, ksy, ws )e ™ @sT
X (Olal(kpx — K1y —k1y, w0y — a)l)ds(klx, kiy, a)l)
X & (K, kay, )] (k3x» ksy, 03)s(—Kax, Kay, 04 ) @i (—Ksy, ksy, ws)
X a7 (kex Koyr 06 ) 8] (Kpy — Gy — Ko, —kgy, @, — w6 )]0)
+H*(—k2x, ksy, a)z)M;‘(kZX, ksy, wz)E*(—k3x, ksy, w3)M£k (k3x, ksy, w3)ei“’3T
X E(—kyx, kay, w4)M-(k4x, Kay, wg)e ™ ¢TH(—ksy, ksy, ws)Ms(ksy, ksy, ws)
X (Olal(kpx — K1y, =K1y, 0y, — wl)&s(klx, kiy, w1)
x a3 (ko kay, ‘UZ)ai (k3x, sy, 03)8; (Kax, kay, 02)85(Ksy, ksy, ws)
X A5 (koxr koyr 06) a5 (Kpx — G — koxy —key, 0 — wg)|0) 4320

+G* (kax, kay, 02 )M; (—koy, Koy, 05)e 2T F* (kay, ksy, 03 )M (—kay, kay, w3)
X F(kax, kay, 0a)Mg(—kax, kay, 04) G (Ksy, ksy, 0s)M;(—ksy, ksy, ws )e ™ @sT
X (01@;(kpx — Gy — 1z —k1y, @, — w1)8s(k1y, K1y @1)
X G (—kzx, kpy 2) @5 (—ksy, k3y, 03)as(—kax, kay, 04)8;(—ksy, ksy, s)
X a1 (kex Keyr 06) 8] (Kpy — Gy — Ko, —kgy, @, — w6 )]0)

+G* (kax, kay, 02 )M; (—koy, kay, 02)e 2T F* (Kay, ksy, 03 )M (—kay, kay, w3)
X E(—kax, kay, 03 )M;(Kax, kay, 04)e " 4T H(—ksy, ksy, w5 )M (ksy, ksy, ws)
X (01@;(kpx — Gy — 1z, —k1y, @, — w1)8s(k1y, K1y @1)
X Q) (—kox, Koy @2) 85 (—ksy, kay, 03)8i(Kax, kay, ©04)8s(sy, ksy, w5)
X a1 (kex Koyr 06 )8} (Kpy — Gy — Ko, —kgy, @, — w6 )]0)

38



From the vacuum expectation values, | got:
EV
= H*(—ka, kyy, w2 )M: (Ko, kyy, w3 )E*(—ksy, ksy, w3 )M; (Ksy, sy, w;)ewsT
X F (kg kay, 0q) Mg (—k4x Kay, 03)G (ks ksy, w5 )My(—ksy, ksy, ws)e~@sT

(2 )3 6116 (( ka) (kpx kﬁx))

x 8 (Ksy — (—key)) & (w5 — (@, — ws))

(2 )3 65 56(( k4x) k6x)6(k4y - k6y)6(w4 - w6)

(2 G700 ((kpx = Gy = k) = kess)
x5 ((~hiy) ~ kay) 8 ((wp - o1) - o)
X s D50k = K)ok = iy )00y = )
HH (ko kay, 02 )M (Kax Koy, 02)E™ (= ks ksy, 03)M; (Kax, kay, w3 )e™sT
X E(—Kaz, kay, 04)M; '(k4x' Kay, @4 )e ™" H(—ksy, ksy, 05 )Ms(Ksx ksy, ws) (4.3.21)
(2 E —— 6,6 (k4x — (kpx — Gy — k6x))

X § (k4y - (_ksy)) o (“’4 = (wp — w6))

(2 )3 65 56(k5x k6x)6(k5y - k6y)6(w5 - w6)

X WS“S ((kpx = Gy = k) — ks
x 8 ((~kry) = kay) 8 ((wp — @) — ws)

1
(2 )3 556(k1x k2x)6(k1y - ka)6(w1 - (‘)2)

+G" (Kax kay, 02 )M (=kax, Koy, 05)€" 2T F* (kax, kay, w3 )M5 (= ks, K3y, w3)

X F(k4x1 k4y; (1)4)M (_k4x k4y, (1)4)G(k5x, ksy, (,L)S)Mi(—ksx’ ksy’ ws)e—iwsT
(2 )3 61 16 (( ka) (kpx k6x))

x 8 (ksy = (=key)) 8 (w5 — (w, - ‘Us))
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(2 )3 65 56(( k4x) k6x)6(k4y - k6y)6(w4 - w6)

(2 )3 65 sa(klx (_k3x))6(k1y - k3y)6((‘)1 - (‘)3)

X %61'16 ((kpx - Gx - klx) - (_ka))
X 6 ((—kly) - kzy) o) ((a)p - wl) - wz)

+G*(k2x' k2y' wz)Mi*(_ka; ka; wz)eiszF*(k3x, ksy, ws)Ms*(_k3x, k3y' 0)3)
T Rax, ’ ] ’ ’ ~lwsT ~R5x, 5y, W5 s\It5x, 5y, W5
X E( kax,Kay w4)M (k4x ks, w4)e 1w H( koy ksy, @ )M (k ks, w )
(2 )3 51 16 (k4x - (kpx - Gx - k6x))
X 5 (k4_y - (_ksy)) 6 ((l)4 - ((Up - (1)6))
1
(2 )3 65 sS(ka k6x)6(k5y - k6y)6(w5 - w6)
(2 )3 -0 55(k1x (_ka))6(k1y - k3y)6((‘)1 — w3)
1
X (27)361',1'6 ((kpx - Gx - klx) - (_ka))

x 8 ((=hay) = kay) 8 ((wp — 1) — w5)
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| then plugged in the expectation value back into the expression for G, integrated

over dg,dw,dg;dw;dq,dw,dgsdws and used the properties of the delta function to get:

1

G(Z) = (Zn)lzfdﬁlda)ldﬁﬁdwﬁ([)*(ﬁp w1)(P(EI)6' (‘)6)

X [ei[((klx:kly)_(_(kpx_Gx_k6x)r_k6y))'F2 _((_kéx'kéy)_(kpx_Gx_klx’_kly))'Fl]

w o~l(@1=(@p=06))tz~(we=(wp-01))u1]
X H* (= kg Kayr 01)M (K a7 )
X E*(—(kpx = Gx = kix), —k1y, wp — ;)
X M; (K = Gy = etz ke, 0 — oy ) (00T
X F(—kex, key w6)Ms(Kox, Koy, we)
X G (= (Kpx = Gy = Kex), —Key, wp — w5)

X Mi(kpx — Gy — Kex» —Key, 0p — w6)e—i(wp—w6)T

+oil ((eikay)~(Kexkey)) Fa=((kpa—Gx—kex—key) = (kpx=Ga—kar—k1y) )} 71]
x o~ |@1~0e)t2~((wp=we)~(wp-w1))tu]
X H*(—kyx, k1y, 01 )M3 (k1x K1y 1) (4.3.22)
X E*(=(kpy — Gy — k1x), —kyy, 0, — ;)
X M; (kpx — Gy — k1y, —k1y, 0, — wl)ei(“’l’_“’l)T
X E(—(kpx — Gx — kex), —key, wp — 06)
X M;(kpx — Gy — Koz, —key, 0p — a)6)e‘i(wP_“’6)T

X H(_k6x: k6y, wG)MS (k6xr kéy, (1)6)

+ o 1(((kpr=Gx—kax)~k1y) ~(~(kpx—Ga—kex).~Key) ) Ta~((~Kexikey) ~(~kuxik1y)) 74
x e~ il((@p=01)~(wp=0))tz-(ws-an)ts]
X G*(—(kpx = Gx — kix), —k1y, 0y — @)
X M; (Kpx = Gy — K, =K1y, w0y, — w5 )el(@p@)T
X F* (=l Ky, 01 )M5 (K Ky, @01)
X F(=Kex, key, ws)Ms(Kez, key, )
X G(=(kpx — Gx — Kex), —key, 0 — )
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X Mi(kpx — Gy = kex, —key, wp — 0)6)e_i(w”_w6)T

+ o 1 ((Flkpr=Gakr).~kay)~(kexkey) ) Fo~((kpx—Gr—kex—key)~(~kixkiy) ) 71]
x ¢~ il((@p=w)-we)ta=((wp=ws)-w1)u]
X G*(=(kpx = Gy = k1x), —ki1y, wp — w1)
X M; (Kpy — Gy — Ky, =K1y, ) — @y )€ (@~ @2)T
X F*(—kyzo ks 01 )M (Raz, Kyo @21
X E(=(kpx — Gy = kex), —key, wp — 6)
X M;(kpy — Gy — kex, —kgy, wp — wG)e"i(“’P"“’G)T

X H(—ksx, k6y, w6)Ms (k6x' k6y' we)]
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Note that in the chosen reference frame, of the optical axis, we have: kg, = k;,, SO
kyx = Gy, and k,, — G, = 0. | used this fact and organized the expression to finally obtain:

1

G(Z) = (Zn)lzfdﬁlda)ldﬁﬁdwﬁ([)*(ﬁp w1)(P(EI)6' (‘)6)

X [ei((klx:kly)_(k6x'_k6y))'(‘FZ_‘Fl)e_i(w6_(wp_w1))(t2_tl)ei(w6—w1)T

X M; (kyx, k1y, 01)Ms(kex, Koy we)
X M} (—kx, —kry, 0p = w1 )M;(=kex, —key, 0p — w5)
X E*(k1x, =Ky, wp — 01)F (=kex, Koy, w6)
X G (kex, —key, wp — w6 )H* (—k1x, K1y, 1)

_l_ei((k1xrk1y)—(kex,key))'(Tiz —?1)6—i(wl—a)G)(tz—tl)ei(we—wl)T
X M;(klx: kiy, wl)Ms(k6x' key, 0)6)
X M;(—klx, —kyy, wp — a)l)Mi(—k6x, —key, wp — cu6)
X E*(klx: _kly: (Up - wl)E(kGX' _k6yr wp - (1)6)

X H* (= Ky, 1y, 01 ) H(= ke, Key, @) (4.3.23)

+ei((klx'_kly)_(k6x'_k6y))'(F2_Fl)e—i(a)e—w1)(t2—t1)ei(we—w1)T
X M;(klx: kiy, wl)Ms(k6x' key, 0)6)
X M;(—ku; —kyy, wp — a)l)Mi(—k6x, —key, wp — a)6)
X F*(—kyy, k1y, 01)F(—kex, Koy, @)

X G*(klx, —k1y, wp — a)l)G(k6x, —key, wp — a)6)

_|_ei((klxi—kly)—(kex'key))'(fz—71)e—i((wp—wl)—we)(tz—t1)ei(wé—wl)T
X Ms*(klx' kly: wl)Ms (k6xr k6yr wé)
X M;(_kle _kly: (,l)p - wl)Mi(_kGX' _k6yr (l)p - (1)6)
X E(kgy, —key, 0p — 06 )F*(—kyx, k1y, 1)

X G*(kyx, —k1y, wp — 01 )H(—kex, kgy, w6) ]
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4.3.4. HOM System Coincidence Count Rate
Having acquired the second order correlation function, I plugged it into the coincidence
count rate formula:

Rc=S f f G (7, t,, 7, t,)dUdT (4.3.24)

Since the integration time of the detector is much longer than the correlation time of the
biphotons, where the orders of magnitude of these time intervals are 100 ns versus 1 as, | could
assume the boundaries of the integral are infinite.

| integrated over dudt and used the definition of the delta function, to get:
1 - - *x (2 =
Rc = SWJ- dq,dw,dqedwep™ (G, w1)P(Ge, W)

X [2n6(k1x — key)2mS (kly — (—ksy)) 2md (a)6 — (wp — a)l)) el@s=w )T
X Mg (klx: klyr wl)Ms (k6xr k6yr w6)
X le“(—klx, —kyy, wp — a)l)Ml-(—k6x, —key, w, — a)6)
X E*(kyx, —k1y, wp — 01)F (—kex, key, we)
X G(kox, —key, wp — we )H* (—k1y, k1y, 1)

+278 (ky — kox) 218 (k1yy — kgy ) 218 (w1 — wg) e @s=@DT
X Mg (ferxs K1y 01 )My (Ko Koy, @6)
X M (—kyx, —k1y, wp — 01)M;(—kex, —key, 0, — W)
X E*(ley, —k1y, 0 — @1)E (Kex, —kgy, 0p — 06) (4.3.25)
X H*(=k1x, K1y, 01)H (=Ko, Ky, w5)

+216 (kye — k)28 ((—kay) — (—key) ) 278 (w0 — ;)@=
X Mg (klx' kiy, wl)Ms (k6x' key, 0)6)
X le*(—klx, —kyy, 0, — wl)Ml-(—k6x, —key, w, — a)6)
X F*(—kqx, k1y, 01)F(—kex, kgy, 06)

X G*(klx, —kly,a)p — a)l)G(k6x, —k6y,a)p — a)6)

+218 (K — ke)278 ((—kay) — key ) 276 ((wp — 1) — wg ) e/ @smo)T

X M; (klxr klyr wl)Ms (k6x' k6y' w6)
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X M;“(—klx, —ky1y, 0, — wl)Ml-(—k6x, —ke¢y, w, — w6)
X E(kex» —key, wp — “)6)F*(_k1x' K1y, “)1)
X G*(Kkyx, =K1y, wp — 01 )H(—kgy, key, we)]
Next, | integrated over dggdw,, used the properties of the delta function, organized the

result and removed the subscript notation “1” to finally find the analytical expression for the

coincidence count rate:
R, = —S dgd
€« (27t)9f 10w
x {lo (ke ey @) My (I, Ky, 0) My (=, =k, a0, — @)
X [|E (ks —ky, 0, — 0)H (ki ky, )|

+ |F(=kn ey, )G (e, =y, 0, — )]

+¢" (ky, Ky, )9 (K, — ey, w0, — ) (@p=20)T (4.3.26)
X My(ky, —ky, 0, — 0)M; (ky, ky, @)
X Mi(—ky, ey, 0)M; (=ky, —ky, 0, — w)
X [E (ks Ky 0)F* (—k, Ky, @)
X G* (ks —ky, wp — @)H(=ks, —ky, 0 — @)
+E* (ky, —ky, wp — 0)F (—ky, —ky, 0p — w)
6k ky ) (k)]
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4.3.5. SPDC Source Probability Amplitude

In the final step, | found the expression of the probability amplitude in the wave function
representation of the SPDC source in terms of the matrix elements of the transfer matrix
representation. This was done by comparing two different expressions for the coincidence
count rate of a system containing only an SPDC source.

The first expression was calculated when | considered the SPDC source alone, and

appears in Eq. (4.3.10):

S - - %7
Resorce = 7353 f dddwlA@, ©)C* (G o) 43.27)

| calculated the second expression from the coincidence count rate of the entire HOM

system by removing all of the other devices, which I did by plugging in the following transfer

relations:
_ _ E Fy_(1 0
M, =M, =1, (G H) s (0 1). (4.3.28)
This left me with:
S - -
RC,HOM with source only — (2_7_[)9f dqdleD(CI, 0))|2- (4.3.29)

By comparing the expressions, the probability amplitude was found to be:
o(d, w) = (2m)*A(q, 0)C"(§, w). (4.3.30)
Plugging the matrix elements of the transfer matrix representing the source into the
biphoton amplitude, according to Eq. (4.2.7), gives the probability amplitude for the specific

chosen model:

iAk,L (AkZL)

0(§,w) = 2m)3kLe 2 sinc (4.3.31)

From the resulting expression, we see it is most probable to find the biphotons when the phase
mismatch nullifies, which implies perfect phase matching. In addition, we see the
proportionality to the length of the crystal and to the coupling coefficient, and the sinc-like

behavior, which are all expected from nonlinear optics.
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The coincidence count rate of the HOM system can now be expressed in terms of the

symbolic representations of all of the optical devices:

R; = (2%)3[ dgdw
X {|A(ky, ky ) C* (ks iy, )
X Mg (ky, ky, 0)M;(—ky, —ky, 0, — “))lz
x [|E(kxs —kys 0p — @) H( =k, iy )

+ |F(=kn, ey, )G (e, ey, 0, — )]

+A" (ky ky, 0)C(ky, ey, @) (4.3.32)
X Ak, —ky, 0p — )C* (kz, —ky, wp — w)e!(@pm2e)T
X My(ky, —ky, w, — 0)M; (ky, ky, @)
X Mi(=kx, ky, 0)M; (—kz, —ky, 0, — @)

X [E(kx' ky, ‘“)F*(_kx' ky, “’)
X G*(ky, —ky, w, — 0)H(=ky, =k, 0, — ®)
+E*(ky, —ky, 0, — 0)F(—ky, —ky, 0, — @)

X Gk ey, 0)H* (= ki ky, )}
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4.4. Simulations

I now present the simulations of the optical system that | have performed. The
simulations were done using Mathematica for a chosen example system, with device
parameters which fit the design goals and reflect realistic properties. The simulation of the
SPDC source are presented first, then the simulation of the multilayer devices, and finally the
simulation of the entire HOM system, culminating in the successful demonstration of the HOM

effect.

4.4.1. SPDC Source Simulation

To demonstrate the feasibility to generate indistinguishable broadband x-ray biphotons,
| considered an example of a source based on parameters that have been used in previous
experiments on x-ray SPDC [33]. A diamond crystal was chosen for the nonlinear source
crystal, due to its extensive use in SPDC measurements at x-ray wavelengths [22,33], narrow
rocking curve, and simplicity of the theoretical model. The thickness of the crystal was 0.8
mm, and phase matching was obtained using the C(660) lattice planes.

The pump photons were polarized inside the scattering plane, their energy was 21 keV,
their rate was 102 photons/s, the area of the beam on the crystal was 0.4 mm?, and their
incidence angle was slightly larger than the Bragg angle, 65 = 44.609 deg, chosen as 65 + 8
mdeg. This deviation was required to solve the phase matching equation for the slightly lower
than one refractive indices. The coupling coefficient in this case was estimated to have an order
of magnitude of 10°*® m™* [22]. In addition, transmission (Laue) geometry was used.

| chose the central photon energy of the signal and idler photons at 10.5 keV and the
solution of the phase matching equation resulted in angles of propagation of 0.976 deg and -
0.976 deg with respect to the optical axis described in Fig. 5. The polarizations of the signal
and idler photons were parallel, which is a result of this setup [33] and is required for
indistinguishability.

| calculated the spectrum of the coincidence count rate at the output of the nonlinear
crystal by integrating Eq. (4.3.10) numerically over the momentum variables, and the result is
shown in Fig. 6. | chose the aperture size of the detector to be 0.4 deg, which defines the angular
width of the SPDC and determines the photon energy range accepted by the detector to be 8.54
keV — 12.89 keV, due to the one-to-one correspondence between the energy and the
propagation direction. The resulting total rate is about 0.15 pairs/s and the bandwidth is 4.35
keV. This result agrees with the experimental results [33] and indicates on the possibility to

measure delays with precision of sub-attosecond time scales.
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FIG. 6. The spectral dependence of the normalized coincidence count rate between the two
output ports of the nonlinear crystal. The total bandwidth, which is obtained for a detector

acceptance angle of 0.4 deg, is 4.35 keV.
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4.4.2. Multilayer Optical Devices Simulation

Next, | present the example parameters | have chosen for the multilayer mirrors and beam
splitter and their simulations. It is shown that it is possible to design optical devices with
sufficient reflectivity that can accommodate the very broad angular distribution and spectrum
of the generated biphotons.

I chose the absorber layers to be platinum and the spacer layers to be carbon, which are
two commonly used materials [39] with a significant difference between their atomic numbers,
and | assumed that the substrates are a silicon wafer. | used the data from [45] for the refractive
indices and absorption coefficients. By using Egs. (2.4.5) and (2.4.6), | found that 20 bilayers
with a width of 3.7 nm and with I" = 0.5 are sufficient to achieve an intensity reflectivity of
90% and that 10 bilayers are required to achieve approximately 50% reflectivity. For the beam
splitter, the substrate width was 15 um, which is shorter by an order of magnitude than the
absorption length at 10.5 keV.

| simulated the dependence of the intensity reflectivity of the mirrors and the beam
splitter on the incidence angle for 10.5 keV in Figs. 7(a) and 7(b). As expected, the simulation
shows peaks in the reflectivity that obey Bragg's law. The high reflectivity at the lower angles
is due to total reflection. I chose the first peak of the reflectivity at an incident angle of 0.976
deg, which is the incidence angle of the biphotons on the mirrors at perfect phase matching at
the degenerate photon energy. The maximum of the reflectivity is 90% and the FWHM of the
reflectivity of the mirror and the beam splitter are 0.07 deg and 0.095 deg, respectively.

Figs. 7(c) and 7(d) show the photon energy dependence of the reflectivity for an incident
angle of 0.976 deg. The FWHM of the reflectivity of the mirror is 0.758 keV and of the beam
splitter is 1.04 keV, whereas the bandwidth of the x-ray SPDC biphotons is 4.35 keV. Since
the angular acceptance and the bandwidth of the multilayer devices are comparable to those of
the biphotons, the parameters | selected enable the observation of the HOM dip at a reasonable

count rate.
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FIG. 7. The reflectivity of the multilayer mirror and the beam splitter as a function of the
incidence angle, (a) and (b), and the photon energy, (c) and (d). Panels (a) and (c) show the
mirror reflectivity and panels (b) and (d) the reflectivity of the beam splitter. The width of a
bilayer is 3.7 nm, with I' = 0.5.
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4.4.3. HOM Interferometer Simulation

Now I turn to the main result of this work and show that the dip of x-ray HOM can be as
short as 0.6 attoseconds at FWHM. To reflect realistic detector properties, | chose an aperture
size of the detector of 0.4 deg. This defines the angular width of the SPDC and determines the
photon energy range accepted by the detector to be 8.54 keV — 12.89 keV, due to the one-to-
one correspondence between the energy and the propagation direction. I numerically calculated
the integral described by Eq. (4.3.32) for various delays between the signal and the idler
photons. My results are shown in Fig. 8 and are normalized to the output of the SPDC source.

It is clear that the dip of the coincidence count rate is nearly zero. The FWHM of the dip
indicates on a correlation time of about 0.6 attoseconds, which corresponds to a spectral
bandwidth of 1.097 keV. This ultrashort time scale corresponds to an optical path difference
between the two arms of the HOM setup of about 1.8 Angstroms.

o o ©
N W s

o
—

count rate (Unitless)

Normalized coincidence

o
o

-2 -1 0 1 2
Phase shifter delay (as)

FIG. 8. The normalized coincidence count rate between the two output ports of the beam splitter
as a function of the delay between the biphotons. The width of the predicted dip is about 0.6
attoseconds at FWHM. The shift from zero is due to the slight difference in the paths of the

biphotons. See text for details.
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5. Discussion and Summary

Reviewing the achievements of my design choices, it is evident that the design of the
source ensures the generation of indistinguishable broadband x-ray biphotons with suppressed
background noise, and the biphotons are indeed indistinguishable by their time of arrival to the
interferometer. In addition, the design of the multilayer interferometer accommodates the broad
bandwidth and angular distribution of the biphotons. Regarding the schematic design of the
entire system, it has a considerable advantage over systems which demonstrate a coincidence
count rate dip but include more devices — it is much easier to implement experimentally.

| note that since the mirrors are designed to have more layers than the beam splitter, the
biphoton bandwidth and angular spread are limited by the mirrors. Therefore, they are narrower
than the acceptance angle and the spectral bandwidth of the beam splitter (the range where the
reflectivity and the transmission are almost constant). This design helps ensuring that the signal
and idler photons are indistinguishable by their frequency distribution at the input of the beam
splitter.

The analytical result of the coincidence count rate behaves as expected. For zero delay,
the biphotons are indistinguishable by their time of arrival to the beam splitter, and the rate is
expected to nullify if the biphotons are also indistinguishable by their frequency distribution.
For infinite delay, the biphotons are completely distinguishable by their time of arrival to the
beam splitter, and the rate is expected to be equal to half the source rate. This behavior can be
demonstrated via simulations, and can be readily seen for ideal optical devices, by plugging

the following representations into the result:

mo=m=1, (; I)= %(‘1‘ L) (5.1)
This gives:
R¢ 1deal devices = lif dddw
’ 2 (2m)° (5.2)
% [|‘p(kx' iy )] = 9" (ks ey, )9 (e, —ley, 0 — w)ei(wp‘z“’)T].
Plugging in T = 0 gives:
R¢ 1deal devices = ELJ dddw
’ 2 (2m)° (5.3)

2 *
X [|<p(kx, ky, w)| - (kx, ky, a))go(kx, —ky, w, — a))]
This expression nullifies if the probability amplitude is symmetrical in the following manner:

go(kx, —ky, w, — w) = (p(kx, ky, w), (5.4)
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which is expected since when the probability amplitude is symmetrical, then the biphotons are
indistinguishable by their frequency distribution. For T — oo, the integration over a

symmetrical range of the rapidly changing exponent nullifies, which gives:

Tl S N 2
RC,Ideal devices _)EW‘]‘ dqd(‘)l(p(kx; ky; w)l . (5-5)

This expression is equal to exactly half the rate of the source, as expected.

As for the simulated coincidence count rate for the proposed parameters, it also behaves
as expected for the extreme values of delays between the biphotons, even though the HOM dip
appears slightly different than in the ideal case. This happens exactly due to the proposed

system not being ideal. Due to the losses of the SPDC biphotons in the interferometer, after
normalizing the coincidence count rate by the total rate of the source, it does not reach % Itis

important to note that when the biphotons impinge on the beam splitter, one of them propagates
through the substrate first. This asymmetry leads to small differences between the amplitude
reflectivity of the two beam splitter ports. This in turn is expressed as a shift in the coincidence
count rate dip. It does not, however, destroy their indistinguishability, due to the intensity
coefficients remaining the same for both beam splitter sides. Additionally, the probability to
measure the coincident state at the beam splitter output is proportional to the difference
between the intensity coefficients [1]. Since the intensity coefficients differ slightly, the dip
does not reach zero completely.

I note that the energy bandwidth calculated from the simulation of the example system is
wider than the bandwidth in Figs. 7(c) and 7(d). However, this is not surprising since those
figures show the bandwidth for a specific incident angle, while the angular distribution of the
biphotons is broad. This observation indicates on the possibility to observe even shorter dips
by designing multilayer devices with an angular dispersion that matches that of the biphotons.

| emphasize that | have described by the proposed system an example of possible
parameters. However, my simulations show that the x-ray HOM effect can be measured for a
large range of parameters. It is clear that the design based on multilayer optics enables this
broad range of options. One concern to consider is the stability of the measurements against
mechanical vibrations. | stress that the stability can be improved by using narrower band optical
devices or narrower detector apertures, but for the cost of widening the dip in the coincidence
count rate and therefore reducing the resolution. This may be overcome by using more
sophisticated data analysis procedures [19,20]. Alternatively, fabrication of the system as a
monolithic structure would improve the stability significantly.
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| also emphasize that while short time delays and optical path differences can be
measured with x-ray interferometers [46-48], the HOM system exhibits several important
advantages. Since in the HOM effect the interference is between the wave functions of the
biphotons and not between classical coherent beams, the experiment can be performed by using
incoherent sources, whereas standard interferometers require sources with high spatial
coherence. Another advantage is the requirements for stability of the effect, which are less
stringent than the requirements for interferometers. While interferometers have to be more
stable than the wavelength for the entire measurement, thus on the angstrom scale for x-rays,
in the HOM effect the system has to only be stable enough to maintain the biphotons
indistinguishable during a detection cycle.

In summary, I have described how to implement the Hong-Ou-Mandel effect in the x-ray
regime and how to utilize the effect for the measurement of sub-attosecond time intervals and
sub-angstrom optical path differences. The measurements are based on the detection of the
variation of the dip in the coincidence count rate as a function of the parameters of the test
sample. | have found that the dip can be observed for a broad range of parameters, and in
particular it depends weakly on the number of layers of the multilayer mirrors and beam splitter.
The relaxed requirements for stability and for coherence of the source suggest that the effect
can be used for a large class of measurements for fundamental science and for a variety of
applications. | also note that the approach I describe can be performed with present day x-ray
sources although the expected count rate is quite moderate. New advanced sources such as the
new high repetition rate free-electron lasers [49,50] are expected to enhance the count rate
significantly. Consequently, my work opens the possibility for quantum precision
measurements that are supported by the ultra-high spatio-temporal precision that is enabled by

using quantum effects with x-rays.
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