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We suggest a new approach for observing x-ray nonlinear wave mixing in opaque materials. We focus on differ-
ence frequency generation of ultraviolet radiation from two short x-ray pulses by measuring the depletion of the
pumping pulses. Like other processes involving nonlinear interactions between x-rays and longer wavelengths,
our method can lead to the development of a probe for spectroscopy of valence electrons at the atomic scale
resolution. The two main advantages of the method we propose over the direct observation of the generated
signal are the ability to probe the properties of materials at wavelengths where they are opaque and the higher
predicted efficiency in the ultraviolet regime. We describe a possible experimental setup with realistic specifica-
tions optimized with respect to the characteristics of the input pulses. We expect that experimental observations of
the effect will be feasible with the new emerging high-repetition-rate x-ray free-electron lasers. © 2019 Optical

Society of America

https://doi.org/10.1364/JOSAB.36.000624

1. INTRODUCTION

Although nonlinear processes at optical frequencies were first
demonstrated more than 50 years ago [1–3], nonlinear
light–matter interactions at x-ray wavelengths were hardly ex-
plored until recently. These interactions were indeed described
nearly half a century ago by Freund and colleagues [4], and by
Eisenberger and colleagues [5]. However, with earlier hard x-ray
sources such as x-ray tubes and synchrotrons, experimental ob-
servations of nonlinear effects have been confined to the spon-
taneous processes of x-ray parametric down-conversion (PDC)
[6–11]. We note that several pertinent effects such as third har-
monic generation [12] and self-action effects [13] were ana-
lyzed theoretically.

In addition to being almost unexplored, nonlinear inter-
actions between x-rays and longer wavelengths can lead to a
method for probing the microscopic structure of chemical
bonds and the density of valence electrons with the atomic scale
resolution [5,9,14,15].

The new x-ray free-electron lasers (XFELs) producing fem-
tosecond pulses of high brightness and peak intensity [16,17]
make possible further novel experiments exploring nonlinear
effects with x-rays. For example, x-ray and optical sum-
frequency generation (SFG) in a diamond crystal was per-
formed by Glover et al. [14]. X-ray second harmonic generation
(SHG) in a diamond was observed by Shwartz et al. [18]. The
efficiencies of those effects, though, are extremely small, no
more than 10−7. Higher-order nonlinear processes are orders

of magnitude less efficient. For example, Tamasaku and col-
leagues reported the observation of x-ray two-photon absorp-
tion (TPA) in germanium with an efficiency of ∼10−13 [19],
and in metallic copper [20]. X-ray TPA in zirconium was
observed by Ghimire and colleagues et al. [21].

In difference frequency generation (DFG) of ultraviolet (UV)
or visible pulses from two x-ray pulses, the frequency of the gen-
erated wave is equal to the difference of the two input frequen-
cies. The DFG of optical radiation from two x-ray pump beams
has been recently analyzed theoretically [22]. The approach con-
sidered in that work, which predicted an efficiency of 10−4, is to
directly measure the generated beam, while assuming that the
pump is undepleted [22]. However, it is clear that such an ap-
proach is not applicable for materials that are opaque at the pho-
ton energy of the generated signal. This restriction limits the
applicability of model to a very narrow range of wavelengths
and materials. In addition, the measurement of the generated
signal requires a careful design that can overcome the strong fluo-
rescence noise in the optical regime, which is originated from the
absorption of the x-ray pulses.

Here we extend the previous work on DFG to optically
opaque materials. We show that it is possible to evaluate the
efficiency of DFG by measuring the depletion of the x-ray
pulses rather than the direct measurement of the intensity of
the generated signal. This approach can overcome the chal-
lenges described above and opens the possibility to use DFG
for spectroscopy of opaque materials. We estimate the pulse
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energy loss of the pump beam due to the DFG process and
predict that for two pump beams with a photon flux of
1011 photons∕pulse, which can be achieved with available
XFELs [23–25], the efficiency of the energy depletion of the
pump beam that results from the DFG process can exceed 10−4.

2. MODEL

We begin by describing the theoretical model, which is similar
to the model that has been used to describe the DFG of x-rays
into the optical regime where the material is transparent [22].
The main differences are the addition of the absorption to the
generated wave and, since we propose to measure the depletion
of the pump beam, we also include the depletion in the
calculations, which is in contrast to our previous work [22].
The propagation of the waves in a nonlinear medium is de-
scribed by the wave equation with a nonlinear term, which
is given by

∇2 ~E � μ0

�
∂~J NL

∂t
� ϵ0

∂2 ~E
∂t2

� ϵ0χ
�1� ∂

2 ~E
∂t2

�
, (1)

where ~E�~r, t� is the electric field, μ0 is the vacuum permeability,
ϵ0 is the vacuum permittivity, χ�1� is the linear (first order) sus-
ceptibility, and ~J NL�~r, t� is the nonlinear current density. We
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where E1,2,3 is the envelope function that varies slowly com-
pared to the wave-number, ki, and frequency, ωi. ϵ̂ is the polari-
zation vector of the field. With this simplification we can use
the slowly varying envelope approximation (SVEA). This leads
to coupled wave equations, which relate the pumping fields and
the generated field envelopes, so
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We denote E1 and E2 as the envelopes of the pumping beams
and E3 as the envelope of the generated beam. ni is the refrac-
tive index, c is the speed of light in vacuum, αi is the absorption
coefficient, and κ is the nonlinear coefficient. θ1, θ2 are the
propagation angles of the pump beams, and θ3 is the propaga-
tion angle of the generated beam with respect to the normal to
the crystal surface (see Fig. 1). The angles are determined by the

phase-matching condition ~k3 � ~G � ~k1 − ~k2. The phase
matching is achieved using the reciprocal lattice vector. This
is possible because wave vectors in the x-ray region are of
the same order of magnitude as the reciprocal lattice vector.
When a perfect phase matching is fulfilled, the individual
atomic dipoles that constitute the material are properly phased.
The field emitted by each dipole adds coherently in the propa-
gating direction and the generated wave extracts energy most
efficiently from the pumping waves. We note that the coupled
equations shown in Eq. (2) include the conditions for phase

matching and are correct as long as the wave envelopes vary
slowly with respect to the UV period and wavelength, and
the condition that the absorption length of each of the waves
is much smaller than the wavelength is satisfied for all waves.

Equation (2) can be simplified by assuming that the
depletion of the input waves is much smaller than their initial
values, thus allowing us to write each wave as Ei�x, y, z, t� �
Ei0�x, y, z � 0, t� � δEi�x, y, z, t�, where δEi ≪ Ei0, and
solve the equations by keeping only the first order terms,
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The nonlinear coefficient is related to the nonlinear current

density by the following relation, κ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏη1η2η3ω1ω2ω3

p
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2ω3E1E�
2

.

We denote ηi as the impedance of the medium, and ωi as
the angular frequency. JNL is the nonlinear current density that
we estimate using the classical theoretical model for nonlinear-
ity, and using the recently observed data of PDC into the
optical regime, where we consider the nonlinearity coefficient
as a fitting parameter.

In previous works the undepleted pump approximation was
assumed. This assumption leads to a simplified model with no
coupled equations that can be solved analytically [22]. Here, on
the other hand, this simplification cannot be made inherently,
since the depletion of the pump is the quantity we want to
measure. Therefore, we need to solve the coupled equations
shown in Eq. (3). These equations possess no analytical solu-
tion and are solved numerically. The theoretical value for the
nonlinear current density is calculated in the same manner as in
previous works, by using the classical model for x-ray and
optical wave mixing [5,26]. The origin of the nonlinearity is the
combination of three phenomena that include the Lorentz
force, the perturbed charge density, and the Doppler shift

Fig. 1. Phase-matching scheme. ~k1, ~k2 and θ1, θ2 are the wave vec-
tors and angles of propagation, respectively, of the pump pulses. ~k3 and
θ3 are the wave vector and angle of propagation, respectively, of the
generated UV wave. ~G is the reciprocal lattice vector.
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[5,10]. It was shown, that while those phenomena seem to be
unrelated, they are all required to satisfy the detailed balance
principle [27]. The nonlinear current, which is the source of
E3, the difference frequency generated wave, is defined by
~J �2�ω3

� ρ�0� ~v�2�ω3
� ρ�1�ω1

~v�1��ω2
� ρ�1��ω2

~v�1�ω1
. To calculate the non-

linear current density, we use the classical equation of motion
for a single electron that includes an effective restoring
force and the electric and the Lorentz force, and the continuity
equation [22,26]:

∂2 ~r
∂t2

� �~ν · ∇�~ν� ω2
0 ~r �

e
m
� ~E � ~ν × ~B�, (4)

∂ρ
∂t

� ∇ · �ρ~ν� � 0: (5)

Here, ~r is the electron displacement from its equilibrium posi-
tion, ~v is the electron velocity, ρ is the charge density, m and e
are the electron mass and charge, and ω0 is the band-gap fre-
quency [14]. ~E and ~B are the electric and magnetic fields of the
beams, respectively. We solve Eqs. (4) and (5) by expanding the
electron velocity and the charge density to the second order, as
done in a previous work [22]. Since we are interested in the
estimation of the effect for the calculation of the nonlinear cur-
rent density we assume that the waves can be considered as
monochromatic plane waves throughout the interaction.
This is equivalent to the assumption that the nonlinear coef-
ficient is constant in the photon energy range that we consider
in Eq. (3), which is determined by the width of the input
pulses. We then substitute the results in the definition of
the second-order current density ~J�2�ω3

, as we described above.
The dominant term of the nonlinear current density can be
expressed as

~J �2�ω3
� ρ0e2

4m

�
ω3 cos�θ1 � θ2��~k3 � ~G�

mω1ω2�ω2
3 − ω

2
0�

�
E1E�

2 e
iΔ~k·~r , (6)

where ρ0 is the electron density in the absence of the pumping
beam (electron density in uniform plasma), and ~G is the recip-

rocal lattice vector. Ei and ~ki are the envelope and wave vector
of the beam, oscillating at frequency ωi. We note that this
model agrees with the reported experimental results of inter-
actions between x-rays and optical wavelengths when the opti-
cal wavelengths are below the band gap [14,28], but shows
discrepancies when the photon energies of the long wavelengths
are above the band gap [28]. The semi-empirical value for the
nonlinear coupling coefficient is obtained by fitting the expres-
sion for the integrated count rate of PDC, including losses [11],
to the experimental data described in Fig. 2 of [28].

We write the envelope of each of the fields as a transform-
limited (TL) Gaussian,
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�
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�
2

, (7)

where N is the number of photons per pulse, and wx1,2 and
wy1,2 are the width of the waist of the beams in the x̂ and ŷ
directions. τ1,2 is the pulse duration at the full width half

maximum (FWHM), for each of the pulses, Δτ is the time de-
lay between the two pulses, and vg is the group velocity of the
pump pulses. We define x1,2 � x cos θ1,2 − z sin θ1,2 and
z1,2 � x sin θ1,2 � z cos θ1,2. We solve Eq. (3) together with
the estimation of the nonlinear coupling coefficient as we de-
scribed above, to find the electric fields of all waves. We obtain
the figures below by integrating the solution of Eq. (3) for E1

(the field of the first input beam) over the pulse duration and
spatial coordinates perpendicular to the normal to the surface of
the crystal (x, y).

3. NUMERICAL SIMULATIONS

To demonstrate the feasibility of the method we propose, we
consider an example where two quasi-monochromatic pump-
ing beams with center energies at 8.05 keV (λ � 0.154 nm)
and 8.0435 keV (λ � 0.15415 nm) enter a diamond crystal
at angles θ1, θ2 relative to the ẑ direction and generate a wave
with a center energy at 6.5 eV (λ � 190 nm), which propa-
gates at an angle of θ3, relative to the ẑ direction (see
Fig. 1). The reciprocal lattice vector normal to the C(111)
atomic planes is used to fulfill the phase-matching condition.
The phase-matching equations imply that the incident angles
of the pumps are θ1 � 21.856° and θ2 � −22.103°, and that
the angle between the normal to the surface and the generated
UV wave is θ3 � 7.6°. The pump input angles with respect to
the atomic planes deviates from the Bragg angle by ∼0.15°. The
absorption coefficients and the refractive index for the x-ray
pumps and for the generated UV were taken from tabulated
data [29,30]. We consider two beams with equal waists.

We first consider the dependencies on the various properties
of the pumping beams and identify the parameters that result in
the maximum efficiency. We show our results in Fig. 2. The
efficiency of the process is defined as the ratio between the
number of the DFG photons and the number of incident
pump photons. Since the generated beam is not directly mea-
sured, the number of generated photons is estimated as
NDFG � N l − Nnl , where N l is the number of pump photons
that are detected in the absence of the second beam (only linear
absorption) and Nnl is the number of the pump photons that
are detected when the second beam is present (linear absorption
and the nonlinear process). The efficiency is therefore given by
ηeff � �N l − Nnl �∕N in, where N in is the number of incident
pump photons entering the nonlinear medium. We calculate
the efficiency by calculating the number of photons per pulse
of the pump with the nonlinear interaction and in its absence.
This is obtained by integrating E1�x, y, z, t�2 over the time and
the transverse directions of the propagation direction.

It is clear that the maximum efficiency is expected when
phase matching is satisfied. However, it is also important to
consider the dependence of the phase matching on the angular
deviation from the perfect phase-matching angle. We plot the
angular distribution of the DFG efficiency in Fig. 2(a). The
width of this distribution is 0.8 mrad at full FWHM. As we
will discuss below, this width is expected to be adequate for
a practical setup.

Due to the weakness of the nonlinearity, intense focused
pulses are required to achieve measurable efficiencies.
However, as the beams are focused more tightly, their spatial
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overlap decreases since they propagate at different directions
with an angle of θ1 � θ2 between them. Thus, there is a spatial
walk-off and the interaction length is shorter [31]. Therefore,
we expect to have a beam width, which leads to a maximal con-
version efficiency as can be seen in Fig. 2(b). We find that the
maximum DFG effect is observed for a beam width of 15 μm.

When examining the efficiency dependence on the pulse
duration, the group velocity mismatch must also be considered.
Since the two pumps propagate at different velocities, short
pulses will suffer also from temporal walk-off. This effect con-
tributes greatly for short pulses. However, we find that for pulse
durations of 35 fs the dominant walk-off term is the spatial
term, whereas for pulses shorter than 20 fs, the temporal term
dominates [32,33]. We find that the maximum DFG effect is
observed for a pulse duration of 35 fs, as can be seen in
Fig. 2(c).

By introducing a delay between the two input pulses, we
note that it is possible to get the temporal structure of the
pulses. We therefore plot the dependence of the efficiency
on the delay between the input pulses in Fig. 3. As expected,
the most efficient wave mixing occurs when the delay ap-
proaches zero. We find that the FWHM is 70 fs. The distri-
bution is slightly asymmetric because of the slightly different
group velocities of the two pump beams.

After optimizing the pulses characteristics (duration, width,
direction, and delay), we estimate the energy depletion of the
pumping beams due to the nonlinear DFG process.

We note that the estimation of the efficiency is highly
dependent on the estimation of the nonlinear coupling coeffi-
cient, which can only be estimated since there is no compre-
hensive theory for nonlinear interactions between x-rays and
UV radiation in the range near the band-gap of the material.
We therefore estimate the nonlinear susceptibility by fitting the

experimental data of the recently observed PDC of x-rays into
the optical regime [28]. This procedure leads to a nonlinear
susceptibility of χ�2��2,2,0� � 2 × 10−17 m

V and the corresponding
DFG estimated efficiency for an input flux of 1011 photons per
pulse is 1.5 × 10−4. The calculation based on the classical model
for nonlinearity, which has been used to describe the nonlinear
interaction between x-rays and optical radiation [26], results in
a nonlinear susceptibility of 2 × 10−16 m

V, and the efficiency for
an input flux of 1011 photons per pulse is 10−2. We note that
this model agrees with the experimental results when the optical
wave is at photon energies below the energy band gap, but
shows discrepancies with the experimental results of PDC,
for photon energies above the band gap [14,28].

We next address the ability to measure the effect with
present-day technology. The ability to measure the depletion
energy of the input beams depends on the ratio between the
energy loss due to linear absorption and the energy depleted
from the beam due to the nonlinear process. The pulses emerg-
ing from the SASE beam, however, do not have a Gaussian
temporal shape but rather have the form of a sequence of spikes
with stochastic phases and amplitudes. Therefore, we also es-
timate the depletion energy for temporally stochastic (TS)
pulses in addition to the TL Gaussian pulses. These pulses re-
semble the temporal shape of the SASE beam [33]. As shown in
[33], we describe the TS pulses as a chain of short Gaussian
pulses with random phases,

ETS�x, y, z, t� � E�x, y, z, t� ×
X∞
m�−∞

eiϕm × e−
�t−mΔτ0−z1,2∕vg1,2

τ0

�
2

,

(8)

where E�x, y, z, t� is the TL Gaussian envelope given in Eq. (7).
τ0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log�2�p

ℏ∕ΔE is the minimal pulse duration, where
ΔE , the FWHM of the power spectrum, was taken to be 1 eV.
Δτ0 is the duration between adjacent spikes (taken to be
Δτ0 � τ0∕5), and ϕm is a randomly assigned phase.

In Fig. 4, we show the normalized pulse energy of one input
beam as a function of the crystal length in the absence of the
second beam (orange line) and when the second Gaussian beam
(blue line) or TS beam (red dashed) is present. It is clear that
the nonlinear effect is most pronounced when the energy trans-
fer due to the nonlinear process is maximized at z � 30 μm.
The length where the efficiency reaches its maximal value is
determined by the overlap between the input beams. At this

Fig. 3. Efficiency of the DFG process in arbitrary units as a function
of the delay between the two x-ray pumps.

Fig. 2. Efficiency of the DFG process in arbitrary units as a function of (a) deviation from phase-matching angle, where the FWHM is 0.8 mrad.
The pulse duration is 35 fs and the beam waist is 15 μm. (b) The beam width at phase matching and with pulse duration of 35 fs. (c) The duration of
the pulses at phase matching with a beam waist of 15 μm.
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distance the ratio between the pulse energy loss due to the non-
linearity and the pulse energy loss without the nonlinearity (lin-
ear absorption) is the largest and is equal to 1.2 × 10−2 when a
TL Gaussian beam is assumed (1 × 10−2 for a TS beam). Since
we propose to use a monochromator, which restricts the band-
width of the input beams at the nonlinear crystal, the difference
between the spectra of the TL Gaussian pulses and the TS
pulses are smaller than without the monochromator. In addi-
tion, an average over a large number of these TS pulses results
with the assumed TL Gaussian pulse shape [33,34]. Therefore,
the energy depletions of the two pulses are comparable. The
small deviation between them is due to the nonlinear character-
istics of the interaction, which becomes more pronounced at
larger propagation distances.

4. SUGGESTED EXPERIMENTAL SETUP

To complete our proposal for the measurement of the depletion
of the pulse energy of the input beams as a means to measure
the nonlinear effect of DFG of UV pulses from two x-ray
pulses, we describe a possible experimental setup. The two
quasi-monochromatic pump beams must satisfy the phase-
matching condition. Consequently, the angle between the
two beams is nearly equal to twice the Bragg angle. This
requirement can be fulfilled by the arrangement of crystals de-
scribed in Fig. 5. All the crystals in this example are diamond
crystals, where we use the same reflection (in this example we
use the C(111) reflection). The input beam is the broad-
spectrum self-amplified spontaneous emitted (SASE) beam.
Crystal 1 and crystal 2 are tuned to the Bragg angle of the first
beam (8.05 keV) at θB � 21.96°. Crystal 1 reflects the beam in
the direction of crystal 2, and crystal 2 reflects the first beam
into the DFG crystal. Crystal 3 is tuned to the photon energy
of the second beam at 8.0435 keV (the Bragg angle is
β � 21.98°), and it reflects the second beam into the DFG
crystal. With this setup, the angle between the two pump
beams is θ1 � θ2 � 43.96°. Crystal 4 is the DFG crystal.

We note that the input SASE beam suffers from large pulse
energy and spectral fluctuations. Since the proposed setup relies
on the use of a Bragg beam splitter and reflectors similar to
those that are used in current split and delay systems
[35,36], the central photon energies of the input beams at
the input of the nonlinear crystal are fixed but their intensities
(and spectra) fluctuate stronger than the intensity of a SASE
beam before the first crystal. Therefore, the comparison be-
tween the linear and the nonlinear depletion as shown in
Fig. 4 requires very careful shot-to-shot measurements of the
pulse energies and spectra of the input beams before and after
the nonlinear crystal. Real-time detectors can be used to mea-
sure the quantities of the input beam using a thin foil that scat-
ters a small portion of the intensity into a photodiode. The
uncertainty in the pulse intensity due to the strong SASE fluc-
tuations is linearly dependent on the intensity. Therefore, the
variation of the pulse intensity will not affect the pulse detec-
tion statistics. We conclude that counting statistics is the main
source for errors that cannot be eliminated. Current detectors
can measure the number of photons per pulse with an absolute
uncertainty of <10% [37–39]. Hence, about 106 pulses are
required to obtain a standard error of 10−4, which is sufficient
to differentiate the nonlinear depletion according to our
stringent estimation of the effect, from the linear depletion.
Consequently, the measurement of the effect is expected to gain
significantly using high-repetition-rate FELs. For example, us-
ing the European XFEL, which can deliver 2.7 × 104 pulses per
second, the measurement time is expected to be ∼40 seconds;
using LCLS II, where the number of pulses per second will be
∼106, the measurement time will be only a few seconds
[40–44]. We also note that the nonlinear depletion depends
on the intensity of the input beam; therefore, a more intense
source will require less repetitions to differentiate the two ef-
fects. The dependence of the depletion originating from the
DFG effect is expected to vary linearly with the pump inten-
sities, in contrast to the efficiencies of linear depletion proc-
esses, which are independent of the intensities. Therefore,
measuring this dependence indicates that the depletion is

Fig. 4. Comparison between the pulse energy depletion of the
pump with the nonlinear process (blue and dashed red) and in its ab-
sence, where the depletion is only due to the linear absorption (or-
ange). Inset: ratio between the pulse energy depletion of the pump
due to the linear absorption and the nonlinear process (NL), and
the energy depletion of the pump due to linear absorption only (L)
for TL Gaussian pulses (blue) and for TS pulses (red dashed).
Pulse duration is 35 fs and the beam width is 15 μm. The depletion
of the TS pulses is taken for an average over 7 pulses.

Fig. 5. Schematic of a possible experimental setup. A beam with a
broad spectrum hits the first Bragg crystal. Crystal 1 and crystal 2 are
tuned to the same Bragg angle and crystal 3 is tuned to the Bragg angle
of the second wavelength. Crystal 4 is the crystal used for the DFG
process. The detector measures the pulse energy after crystal 4. Real-
time detectors are used to measure the pulse energies of the input
beams before the nonlinear crystal. They can be implemented, for
instance, using a thin foil that scatters a small portion of the intensity
into a photodiode.
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due to DFG and can be used to distinguish the effect from
other effects. In addition, it is also possible to discriminate
the DFG from other effects that are not wave mixing by block-
ing one of the beams, since the DFG effect should vanish with
only one beam. Another possible mechanism to estimate the
absorption is by detecting the fluorescence. However, in dia-
mond for example, only the visible wavelengths will be detected
while the UV wavelengths will be absorbed.

5. SUMMARY AND CONCLUSIONS

In conclusion, we considered a new approach to measure the
nonlinear mixing of x-rays and longer wavelengths by measur-
ing the depletion of the pumping pulses. We then analyzed the
effect of the DFG of ultraviolet radiation from two short x-ray
pulses. This method opens the possibility to measure DFG in
the x-ray regime with various materials, including materials that
are opaque at the generated signal wavelength. Our work pre-
dicts efficiencies that are higher than x-ray and visible wave
mixing, which we relate to the resonant enhancement of the
nonlinearity near the binding energies of the valence electrons
in the sample. Despite the resonant enhancement, our calcu-
lations indicate that the measurement of the effect requires
high-repletion-rate XFELs.

Finally, the method we propose advances the possibility to
use x-ray nonlinear interactions as a probe for valence electron
spectroscopy at the atomic scale resolution. The nonlinear cur-
rent density, which drives the nonlinear process, is related to the
atomic charge density, as can be seen from Eq. (6). Hence, it is
possible to reconstruct the valence electron charge distribution
using a series of measurements of the Fourier components of
the nonlinear susceptibility [9]. Because it is possible to control
the delay between the input pulses, we believe our method can
lead to the development of a probe for the dynamics of events
associated with the charge distribution of valence electrons with
temporal resolution of sub-femtoseconds.
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