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We study the process of x-ray second-harmonic generation (SHG) from focused ultrashort pulses. We numerically
simulate and derive approximated analytical expressions for the efficiency and tolerances of the SHG process,
considering the effects of temporal and spatial walk-off, and the coupling to the linear Bragg scattering. We show
that for the recently observed x-ray SHG in diamond, the simultaneous Bragg diffraction of the generated second
harmonic is negligible. However, spatiotemporal walk-off effects are crucial components regarding the wave
propagation aspects of this process, due to the highly noncollinear phase-matching geometry. © 2015 Optical

Society of America
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1. INTRODUCTION

The nonlinear response of matter to electromagnetic fields holds
many scientific and technological applications. Commonly,
nonlinear processes are weak and require high-intensity sources
in order to be observed. Since far above resonances, nonlinear-
ities decrease with frequency, and since highly brilliant sources
in the x-ray portion of the electromagnetic spectrum have been
absent until very recently, experimental observations of nonlin-
ear phenomena, such as second-harmonic generation (SHG),
have not been reported in the x-ray regime. Indeed, with earlier
hard x-ray sources—x-ray tubes and third-generation synchro-
trons, only spontaneous parametric downconversion (SPDC)
has been observed [1–3]. Since SPDC relies on the vacuum field
as one of the driving fields for nonlinear interaction, the large
density of states of electromagnetic modes at x-ray wavelengths
compensates for the low nonlinear coupling. However, the con-
struction of hard x-ray free electron lasers (XFELs), producing
femtosecond pulses of high brightness and peak intensity, led to
the possibility of performing further experiments to explore
nonlinear effects, such as x-ray and optical wave mixing [4],
stimulated Raman scattering [5], and x-ray two-photon absorp-
tion [6]. X-ray nonlinear processes are different than conven-
tional nonlinear processes in the optical regime in many
aspects [3,7–9]. For example, the short wavelengths of x rays
result in a local space-dependent optical response, which enables
second-order nonlinear effects in centrosymmetric materials. A
fundamental second-order nonlinear effect, SHG, which van-
ishes in homogeneous media, has a phase-matching scheme that
imposes large angles between the pump and the generated

second-harmonic (SH) beams. Nazarkin et al. theoretically stud-
ied the effect of x-ray SHG from a plane wave monochromatic
pump in a perfect crystal [10]. They pointed out that the phase-
matching condition is only slightly different than the Bragg
condition; thus, the generated SH can elastically scatter. They
found the conditions for an optimal synchronous propagation of
the two SH fields, which depended on both the linear and non-
linear susceptibilities. Recently, using the SPring-8 Angstrom
Compact Free-Electron Laser (SACLA), Shwartz et al. [11]
observed SHG from pump pulses at 7.3 keV with an average
intensity of ∼1016 W∕cm2, measuring a maximal conversion
efficiency of 5.8 × 10−11. That measurement agreed with
expected properties of this process, such as phase-matching
angles and the quadratic scaling of the SH counts with the
pulse-energy.

In this paper we extend the work of Nazarkin et al. and
analyze the process of SHG from short and focused pump
beams in a perfectly ordered crystal. We solve the wave equa-
tions numerically using the undepleted-pump approximation
and compare the results with the recently performed experi-
ment [11]. By using the assumptions of strong walk-off
between the pump and SH beams, and small scattering angles,
we derive a closed-form solution and compare with the numeri-
cal results. We find that the elastic scattering of the SH beam is
negligible in many practical experimental circumstances. We
discuss the dependencies of the spatial and temporal overlap
between the pump and the SH beams on the pulse duration
and beam size of the pumping beam. As expected, we find that
although the use of short and focused pulses, which leads to
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high peak intensities, is required to achieve reasonable SHG
efficiency, it introduces spatial and temporal walk-off effects,
which limit the efficiency enhancement. In addition, as in con-
ventional SHG using focused pump beams, when the Rayleigh
range is shorter than the propagation lengths of the pump or
the SH beams in the nonlinear medium, the SHG process is
dominated by diffraction, and tighter focusing leads to a reduc-
tion of the efficiency.

2. MODEL

A. Nonlinear Current Density and Envelope
Equations

In this section we describe the envelope equations for the SH
field and the induced nonlinear current density, which is the
source for the radiation at the SH.

As pointed out by Nazarkin et al., since the indices of re-
fraction at both the pump and SH frequencies are nearly equal,
the phase-matching angles are very near the Bragg angle at the
SH frequency (Fig. 1). Therefore, a fraction of the generated
SH may be elastically Bragg scattered [10]. We analyze this
effect by considering two SH fields: the SH that is generated
from the pump, denoted as Ẽsh, and its Bragg scattered field,
which we denote as Ẽsc. We write the fields as Ẽi�r; t� �
1∕2Ei�r; t� exp�iki · r − 2iω0t�ei � c:c:, where Ei�r; t� is the
envelope function over the exp�iki · r − 2iω0t� carrier wave,
and i denotes the generated and scattered SH modes. We
use the slowly varying envelope approximation (SVEA) [12]
j∂2Ei∕∂z2i j ≪ jki∂Ei∕∂zij and j∂2Ei∕∂t2j ≪ jω0∂Ei∕∂tj,
where zi � x sin�θi� � z cos�θi� is the axis along the propa-
gation direction of the generated SH or its elastically scattered
mode. Using a similar separation for the induced current
density for the nonlinear process J̃NL�r; t� � 1∕2JNL�r; t�
exp�ikNL · r − 2iω0t�eNL � c:c: and the two complementary
linear Bragg processes J̃L;��r; t� � 1∕2JL;��r; t� × exp�ikL;�·
r − 2iω0t�eL;� � c:c:, we get the following envelope equations:
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where xi � x cos�θi� − z sin�θi� is the axis normal to the
propagation direction of each beam. k and η are the wave vector
and impedance inside the material, respectively, ω0 is the pump
central angular frequency, and vg is the group velocity.

In the hard x-ray regime, high above resonances, the linear
interaction is described by Thomson scattering giving the
susceptibility χ�r� � −Rλ2ρ�r�∕π [13] where ρ�r� is the
charge distribution, λ is the wavelength of the driving field,
and R � q2∕4πε0mec2 is the classical radius of the electron,
me and q being the electron mass and charge, respectively.
Since the electron charge distribution ρ�r� in ideal crystals is
periodic, we may expand it in a Fourier series ρ�r� � P

mρm
exp�iGm · r�, where ρm � V −1

R
V ρ�r� exp�−iGm · r�dv is its

Fourier components, with Gm being the reciprocal vectors,
and with the integration carried over the unit cell volume V .
Similarly, we perform a Fourier expansion of the linear suscep-
tibility χm � −Rλ2ρm∕π. We assume that the phase-matching
condition for the nonlinear process is near the Bragg condition
at the SH for a specific reciprocal lattice vector G. Therefore,
the related current densities describing the two complementary
Bragg scattering processes are J̃L;��r; t� � −2iω0ε0χGẼsc�r; t�
exp�iG · r� and J̃L;−�r; t�� −2iω0ε0χ−GẼsh�r; t�exp�−iG · r�.

To describe the interaction for the induced nonlinear cur-
rent, we consider a classical model of cold collisionless plasma
fluid [14]. Assuming a pump beam 1∕2Ep�r; t� exp�ikp · r −
iω0t�ep � c:c with central angular frequency ω0, which is
much higher than any bound electronic state in the material,
we use a perturbative approach and find the second-order non-
linear current oscillating at the SH frequency [10]:

J̃NL�r; t� � −
q2ρGE2

p�r; t�
8m2

eω
3
0

�kp � 2�G · ep�ep�

× exp�i�2kp �G� · r − 2iω0t � � c:c: (3)

Furthermore, we may use Eq. (3) to write the second-order non-
linear susceptibility χ�2��2ω0;ω0;ω0� � −iq2ρG�4ε0m2

eω
4
0�−1×

�kp � 2�G · ep�ep� · esh [10]. We note that in a uniform plasma
(where only the ρ0 component of the charge density is nonzero),
the nonlinear current oscillates in the propagation direction
of the pump beam; thus, since only the transverse component
of the current density contributes to the electromagnetic radia-
tion at the far field, SHG does not occur in uniform plasmas. For
this reason, a medium with periodic charge distribution (a per-
fect crystal) is used as the nonlinear medium. In addition, it is
also important to note that we consider the regime in which, on
the one hand, the pump frequency is much higher than any res-
onance frequency in the system, so all of the electrons in an atom
react the same and constitute the cold plasma. On the other
hand, the photon energy is much less than the electron rest
energy, so relativistic dynamics is neglected.

Here we expand the model suggested by Nazarkin et al. for
pump pulses that are finite in time and space, introducing walk-
off and diffraction effects. We use the SVEA, and assume an
undepleted pump, which is valid because of the low efficiency

Fig. 1. Phase-matching schemes. (a) SHG of the pump beam, using
a specific reciprocal lattice vectorG to phase match the nonlinear proc-
ess. (b) Since the generated SH propagates in a direction near the Bragg
condition of the SH frequency, it is partially elastically scattered.
(c) The scattered SH is partially backscattered by the complementary
Bragg process.
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of this process. Using Eqs. (1)–(3), we get the equations gov-
erning the electric field envelopes of the two SH modes:
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In Eqs. (4) and (5) we neglect the absorption of the SH wave
since for the case in which all pertinent frequencies are well
above resonances, the absorption coefficient of the pump is
much larger than the absorption coefficient at the SH.ΔkNL �
2kp �G − ksh and ΔkB � ksc �G − ksh are the phase mis-
match vectors for the nonlinear and Bragg scattering processes,
respectively. We note that the structure of Eqs. (4) and (5) is
similar to the structure obtained by using the Takagi–Taupin
formalism for deformed crystals [13]. Here, however, we as-
sume that the medium is an ideal crystal, but the inhomoge-
neity is introduced by the pump beam since it is not a
homogeneous monochromatic plane wave.

B. Modeling the XFEL Pump Pulse

Pulses emerging from self-amplified spontaneous emission
(SASE)-based XFELs contain a large number of randomly dis-
tributed spikes. Unfortunately, due to the stochastic nature of
the pulses and since complete measurements of the pulse struc-
ture are still out of reach, there is no deterministic model that
describes the temporal structure of the pulses. It is well known
that for nonlinear interactions, in general, the details of the
pulse structures can be very important.

Here we consider three different models for the longitudinal
pulse structure f �zp; t�: transform-limited (TL) pulses, linearly
chirped (LC) pulses, and temporally stochastic (TS) pulses. We
compare between the models by keeping the same Gaussian
power spectrum with full width at half-maximum (FWHM)
bandwidth ΔE . To model the pulse structure of the pump,
we first write the general envelope of a Gaussian beam [15]:

Ep�xp; y; zp; t� �
E0 exp�−αpzp�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�1 − iτx�zp���1 − iτy�zp��
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−
y2

w2
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�

× f �zp; t�: (6)

Here τx�zp� � 2�zp − z0;x�∕bx and τy�zp� � 2�zp − z0;y�∕by.
zp is the propagation axis of the pump pulse, and xp is the
orthogonal axis parallel to the scattering plane. αp is the field
absorption coefficient. w0;x and w0;y determine the Gaussian

pulse size, z0;x and z0;y set the focal points, and bx �
k�ω0�w2

0;x , by � k�ω0�w2
0;y are the confocal parameters inside

the material. We use a general complex amplitude of a LC
Gaussian pulse to describe the LC pulses [15]:

f �zp; t� � exp
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where τ determines the Gaussian pulse duration and ξ defines
the linear chirp. We estimate the pulse duration τ by taking the
linear chirp coefficient as ξ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ΔE2τ2∕�8ℏ2 ln 2�� − 1

p
(ℏ is

the reduced Planck constant). We also use Eq. (7) to model the
TL Gaussian pulse, by setting ξ � 0, having the minimal pulse
duration τ0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
ℏ∕ΔE .

We describe the TS pulses, constructed by a closely packed
and equally spaced train of coherent TL Gaussian spikes with
random phases, as follows:
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Δτ is the duration between the spikes (taken to be Δτ � τ0∕5).
For each pulse we generate a set fξmg of uniformly distributed
�0; 2π� random numbers. Similar to Ref. [16], the average over
a large number of these stochastic pulses corresponds to an
assumed average Gaussian pulse structure of duration τ and
FWHM bandwidth ΔE (see Fig. 2).

3. APPROXIMATED ANALYTICAL
EXPRESSIONS

To describe the efficiency dependence upon the different
parameters, analytical calculations of the overall SHG efficiency
and tolerances are shown in the following section. As we will

Fig. 2. Input pump pulse. (a) and (b) show the intensity and power
spectrum, respectively, of a single TS pulse realization, assuming an
average FWHM bandwidth of 1 eV and an average FWHM duration
of 20 fs. The spectrum is shown as a function of photon energy relative
to the central frequency. (c) and (d) show the averaged intensity and
power spectrum, respectively, over 1000 TS pulse realizations (black
solid lines), plotted along the corresponding Gaussian functions (blue
circles).
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show below, in many practical cases it is possible to find a sim-
ple closed-form solution for the discussed problem.

Wang and Weiner [15] developed a theoretical framework
for calculating the efficiency of Type I SHG by tightly focused
and ultrashort pulses with simultaneous spatial and temporal
walk-offs, generalizing previous work by Boyd and Kleinman
[17]. We use their approach to describe the propagation aspects
of SHG at x-ray wavelengths in the regime where the Bragg
scattering of the generated SH is negligible. In essence, the
problem is to solve the SVEA equation for the SH field where
the pump and generated SH beams propagate in different di-
rections, which are imposed by the phase-matching scheme.
This is similar to noncollinear Type I SHG in uniaxial crystals,
where a walk-off effect is introduced by the different directions
of the Poynting and wave vectors related to the extraordinary
polarization. Therefore, it is expected that the description of
the propagation aspects of x-ray SHG will have the same form
as the propagation of noncollinear SHG in uniaxial crystals.

We apply the results of Ref. [15], and assume a small walk-
off angle ρ and no absorption of the pump αp � 0. Within
these assumptions, we use Eq. (19) in Ref. [15], which shows
that under the paraxial approximation, the overall SHG effi-
ciency (which we define as the number of output SH photons
per incident pump photon) from a LC Gaussian pump pulse
may be evaluated by calculating the double integral:

ηsh �
γUp

2
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Z L
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p ; (9)

where γ � ω2
0jχ�2��2ω0;ω0;ω0�j2∕�2πn2pnshε0c3�, Up is the

pump pulse total energy, and L is the crystal length, assuming
a symmetrical Laue propagation geometry (transmission
geometry where the reciprocal lattice vector is parallel to the
surface of the slab). Equation (9) is similar to Eq. (19) in
Ref. [15], with the only differences being the assumed propa-
gation geometry (hence the different integration limit), the pre-
sentation of the LC Gaussian pulse in Eqs. (6) and (7), and the
definition of the conversion efficiency (which here is in terms of
the number of photons). We choose to take the direction of the
carrier wave vector of the SH field ksh in which the SHG phase
mismatch Δk � jΔkNLj is normal to the boundary surface.
The characteristic length within the pump and generated
SH overlap, the spatiotemporal walk-off length, is defined as

Ls−t �
�
tan2�ρ�
w2
0;x

� ξ2 � 1

τ2
GVM2

�
−1∕2

: (10)

In Eq. (10) GVM � �1∕�vg�2ω0� cos�ρ��� − �1∕vg�ω0�� is the
group velocity mismatch. This expression is similar to Eq. (15)
in Ref. [15]. Ls−t represents an effective walk-off length that
considers both the spatial and temporal walk-off effects, causing
the limited interaction length between the pump and generated
SH waves. The value �ξ2 � 1�∕τ2 remains a constant for a
given bandwidth ΔE . Therefore, observing Eq. (10), one notes
that the interaction length Ls−t is limited by the coherence time
of the pulse, which is inversely proportional to ΔE . In the case
of weak focusing, where the confocal parameters are much

larger than the crystal length, and a long crystal, which contains
many interaction lengths, we assume bx; by ≫ L ≫ Ls−t and
L ≫ L2s−tΔk. Under these assumptions, Eq. (9) is reduced to
a simplified expression:

ηsh �
γUpLs−tL

2w0;xw0;yτ cos�θp�
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�
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�
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2

�
2
�
: (11)

Similar to noncollinear phase-matching schemes in the optical
regime, Eq. (11) shows that the efficiency grows linearly with
the propagation length, as opposed to the quadratic depend-
ence when walk-off effects are negligible [12]. From Eq. (11),
we also note that when the pump waist size in the direction
parallel to the scattering plane w0;x decreases, the efficiency
approaches a constant value with respect to w0;x. A similar
argument may be used to describe the efficiency dependence
on the pulse duration τ. We note that for further focusing,
where bx; by ≫ L is not satisfied, the efficiency decreases
due to diffraction.

Next, we generalize Eq. (11) to account for the effect of lin-
ear absorption of the pump pulse throughout its propagation
inside the nonlinear medium. Since the efficiency grows lin-
early with the pump-pulse energy and with the crystal length,
we modify Eq. (11) by including the exponential decay of the
pump field along its propagation path. Therefore, after an addi-
tional integration Eq. (11) becomes

ηsh �
γUpLs−t

4αpw0;xw0;yτ

�
1− exp

�
−

2αpL
cos�θp�

��
exp

�
−

�
ΔkLs−t

2

�
2
�
:

(12)

We now discuss the rocking curve (the acceptance angle
bandwidth) of the SHG process. As we elaborated in the pre-
vious paragraphs, the phase-matching scheme in this process is
similar to the implementation of quasi-phase-matching (QPM)
by periodically poled devices. In their study of tuning and
tolerances of QPM, Fejer et al. [18] derived the tolerance of
the SHG efficiency to any parameter the phase mismatch
Δk depends on. From Eq. (11), we observe that the efficiency
is reduced to half of its perfectly phased-matched value when
exp�−�ΔkLs−t∕2�2� � 1∕2 is satisfied. Therefore, the mismatch
Δk for which the SHG process will be half as efficient as the
phase-matched case is

Δk � 2
ffiffiffiffiffiffiffiffi
ln 2

p

Ls−t
: (13)

Following [18], we expand the mismatch Δk dependence on
the pump angle θp to the first order Δk�θp� � �θp − θp;0�
∂Δk∕∂θpjθp�θp;0

, where θp;0 is the angle of the pump beam at

perfect phase-matching. Using Eq. (13), the FWHM of the
rocking curve is therefore Δθp;FWHM � 4

ffiffiffiffiffiffiffiffi
ln 2

p
L−1s−t j∂Δk∕

∂θpj−1θp�θp;0
. Observing the geometry of the phase-matching

scheme in Fig. 1(a), we find that ∂Δk∕∂θpjθp�θp;0
� 2kp

tan�θp;0 � θsh;0�, where θsh;0 is the SH angle at perfect phase
matching. Since the dispersion in x-ray frequencies is relatively
weak, we may assume that the perfect phase-matching angles
of both the pump and SH beams are near the Bragg angle for
the SH frequency θB. Therefore, we find that the FWHM of
the rocking curve is
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Δθp;FWHM � 2
ffiffiffiffiffiffiffiffi
ln 2

p

kpLs−t tan�2θB�
: (14)

The spectral bandwidth of the SHG process is derived in a
similar manner. We expand the dependence of the mismatch
Δk on the pump angular frequency ω0 to the first order
Δk�ω0� � �ω0 − ωc�∂Δk∕∂ω0jω0�ωc

, where ωc is the central
pump angular frequency at perfect phase matching.
Assuming weak dispersion ∂n�ω0�∕∂ω0 � 0, we obtain
∂Δk∕∂ω0jω0�ωc

� �2∕c�fn�ωc� − �n�2ωc�∕ cos�θp;0 � θsh;0��g.
Taking both perfect phase-matching angles θp;0, θsh;0 as the
Bragg angle for the SH frequency θB, and, in addition, taking
the indices of refraction at both the pump and SH frequencies
as unity, we obtain the FWHM spectral bandwidth:

ΔωFWHM �
ffiffiffiffiffiffiffiffi
ln 2

p
cos�2θB�c

Ls−t sin2�θB�
: (15)

We note that the dispersion has very little influence on the
spectral bandwidth, which is determined mainly by the non-
collinear nature of the phase-matching scheme.

4. NUMERICAL SIMULATIONS

In this section we describe the numerical solutions of the SVEA
equations, and compare them with the experimental observa-
tions and the approximated analytical expressions presented in
the previous section. We numerically solve Eqs. (4) and (5)
assuming the parameters of the recently performed experiment
[11], and using the fast-Fourier-transform method with respect
to variables x and t and an integration with respect to z. We
assume that the wavelength is 1.7 Å (7.3 keV), the polarization
is parallel to the scattering plane (π-polarized), the pulse
total energy is 4.3 μJ, the FWHM bandwidth is 1 eV, and
the symmetric Gaussian FWHM waist is 1.5 μm. The nonlin-
ear medium is a 0.5 mm long diamond crystal, with the pump
focused at half of its thickness. We choose to work in a
symmetrical Laue geometry and phase match the nonlinear
process with the (2 2 0) reciprocal vector. Figure 3 depicts the
differences between the predictions of the pump models de-
scribed in Section 2.B.

In Figs. 3(a) and 3(b) we plot the efficiency of the process as
a function of the propagation distance. In Fig. 3(c) we plot the
rocking curves. Comparing these calculations to the experimen-
tal results [11], we find that the two broadened structures
(LC and TS), with an assumed 20 fs FWHM duration, are
adequately in agreement with the measured values. From
Fig. 3(a) we note that the SHG efficiency dependence on the
propagation length, which is close to linear with a saturating
effect due to the absorption of the pump, as expected by
Eq. (12), has a similar form for the three pump models. The
different scaling of these curves originates from the different
pulse structures; the TL pulses have the highest peak intensity,
and therefore the highest efficiency, and the two broadened
pulse models lead to a similar efficiency, since they have a
similar average pulse structure. Inserting these parameters into
Eq. (14), we find that the rocking curve width is Δθp;FWHM �
49.5 μrad, which is in a good agreement with Fig. 3(c). We
note that the measured rocking curve in Ref. [11] (180 μrad
FWHM) is broader than the rocking curve we calculated here.

Possible origins for this broadening, which were not taken into
account in the current work, could be the presence of spatio-
temporal coupling in the short spikes emerging from the XFEL
and deviations of the transverse structure of the pump field in-
duced by the optical elements along the beam path. An addi-
tional cause might be imperfections of the nonlinear diamond
crystal. Since both the TL and LC pump structures of the same
bandwidth result in an equal walk-off length Ls−t , their rocking
curves are similar, as is depicted in Fig. 3(c). In addition,
Eq. (15) predicts a FWHM spectral bandwidth of 1.53 ×
1015 Hz (1 eV) for the above parameters, which is confirmed
with an additional simulation.

We note that the Bragg scattering process of the SH-
generated mode is negligible. This is because the effective in-
teraction length between the two modes and the coherence

Fig. 3. Numerical simulations of the SHG process for different
pump models. (a) and (b) show the efficiencies of the generated
SH and its elastically scattered mode, respectively, as a function of
propagation distance. Using the parameters described in Section 4
for perfect phase matching, we consider three pump structures: a trans-
form-limited (TL, black solid lines), linearly chirped (LC, red dashed
lines), and temporally stochastic (TS, blue dotted line, averaged over
200 realizations) Gaussian pulses. The average FWHM duration is
assumed to be 20 fs. The circles in (a) represent the efficiency estima-
tions for the two deterministic pump models using Eq. (12). The sim-
ulations for the TS pulses were performed assuming negligible Bragg
scattering. (c) The SHG efficiency dependence on the deviation of the
pump beam from the phase-matched angle Δθ. Using normalized
units, the two rocking curves are nearly identical.
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length arising from the nonzero phase mismatch are much
shorter than the extinction length of the elastic scattering proc-
ess. From Eqs. (4) and (5) one notices that, for short propaga-
tion distances, where the second term on the right-hand side of
Eq. (4) is much smaller than the first term, an optimal coupling
between the pump beam and the scattered SH mode occurs
when ΔkNL � ΔkB. However, since the refractive indices at
the fundamental and the SH are different due to dispersion,
this synchronization between the phase mismatch of the non-
linear and linear processes is impractical.

Next, we describe the dependencies of the efficiency on the
beam size and pulse duration. As mentioned, due to the weak
nonlinear susceptibility, it is necessary to focus the pump beam
in order to achieve higher SH signal for a given pump-pulse
energy. However, since the focused pump and the generated
SH signal propagate in different directions where ρ �
θp � θsh is the angle between them, they have a finite distance
within which they overlap, causing a spatial walk-off.
Furthermore, the group velocity mismatch (GVM) results in
a finite distance within which short pulses overlap, which causes
temporal walk-off after a finite time. We note that focusing in
the direction normal to the scattering plane does not introduce
walk-off effects. The higher peak intensity leads to enhance-
ment of the SHG efficiency, which is inversely proportional
to w0;y, as long as the crystal length is shorter than the confocal
parameter. However, reducing the beam size in the scattering
plane results in a shorter interaction length, which leads to a
reduction of the efficiency enhancement by the higher peak

intensity. This effect is depicted in Fig. 4(a), which shows the
dependence of the efficiency on the beam size of the pump in
the scattering plane, using the parameters described at the
beginning of the section. Figure 4(b) shows the efficiency
dependence on the pulse duration, assuming a TL pump pulse.
Both numerically calculated curves (solid lines) in Fig. 4 are
plotted along the estimated efficiency dependence using the
approximated analytical expression in Eq. (12) (dashed lines).
As mentioned in the previous section, in the regime where the
crystal length is much smaller than the confocal parameter,
the SHG efficiency approaches a constant value with respect
to both w0;x and τ as they decrease. This behavior is shown
in Fig. 4(b), where as opposed to diffraction, dispersion is still
negligible for the discussed parameters.

Finally, in Fig. 5 we compare the numerical calculations of
the dependence of the efficiency on the photon energy of the
pump (solid line) with calculations obtained by using Eq. (12)
(dashed lines). As expected, the higher the pump photon energy
(resulting in a smaller walk-off angle), the better the approxi-
mation holds. However, even with lower and more relevant
photon energies, this simple analytical expression gives a decent
estimation for the expected efficiency.

5. CONCLUSIONS AND OUTLOOK

To conclude, we analyzed the process of SHG at x-ray wave-
lengths from short and focused pulses. Modeling the input
pump pulse using both deterministic and random spiky pulse
structures, we simulated a recently performed experiment
observing SHG using a pump pulse from an XFEL and showed
good agreement with the experimental results. In addition,
we studied several general aspects regarding the efficiency op-
timization and tolerances of the x-ray SHG process. Since the
nature of the phase-matching geometry causes the pump and
the generated SH to propagate in different directions, the
finite interaction distance between them limits the efficiency
enhancement when focusing in the direction parallel to the
scattering plane. Therefore, walk-off considerations support
small angles between the pump and the SH beams. However,
the nature of the plasma-like nonlinearity we discussed in this

Fig. 4. (a) Efficiency dependence on the focusing in the scattering
plane (solid line). Focusing in a direction parallel to the scattering
plane reduces the effective interaction length and therefore moderates
the enhancement of the SHG efficiency owing to the higher peak
intensities. Focusing further reduces the overall efficiency due to dif-
fraction. (b) Efficiency dependence on the pulse duration (solid line).
The numerical simulations were performed assuming the parameters
described in Section 4 for a 50 μm crystal, a TL pulse, and varying
beam waists and durations of down to 35 nm and 85 as, respectively.
The approximated efficiency estimations using Eq. (12) are plotted
along both figures (dashed lines).

Fig. 5. Comparison between numerical simulations (solid line) and
the approximated analytical expression (dashed line) for the efficiency
as a function of the photon energy of the pump. The parameters are
described in Section 4. The pump pulses are transform limited and the
crystal length is L � 0.5 mm. The results of the analytical expression
approach the numerical results for high photon energies, where the
walk-off angle is small.
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paper results in a vanishing SH field as the angle between the
pump and the SH approaches to zero. Hence, the optimization
between the nonlinearity and the walk-off should be considered
for any SHG experiment. This consideration does not affect
the efficiency enhancement by focusing the pump beam in
the direction normal to the scattering plane, which is efficient
until the confocal parameter becomes comparable to the crystal
length. In addition, in contrast to nonlinear optics in the
optical regime, in the x-ray regime the nonlinear materials are
not transparent and, thus, radiation damage could be critical.
Recent studies on radiation damage with XFELs suggest that
the important quantity for damage is the pulse energy per area
[19]. The implication is that the improvement of the SHG
efficiency by focusing the beam is rather limited. Since the size
of the beam is limited by the radiation damage, it would be
useful to enhance the peak intensity of the pump beam by op-
timizing its structure in the temporal domain. The most effi-
cient approach to achieve this requirement is to use TL pulses.
Our work suggests that it is possible to achieve much higher
efficiencies than the efficiency observed in the SACLA experi-
ment by using current and future XFELs. For example, x-ray
pulses generated by using self-seeding techniques with inten-
sities that are more than 100 times larger than the maximum
intensity reported in the SACLA experiment are now available
at the Linac Coherent Light Source (LCLS). With this source
and with further optimization of the SHG process, as discussed
in this paper, the expected efficiency would be about 10−7.
Finally, under the assumptions of negligible elastic Bragg scat-
tering of the generated SH and small scattering angles, we
showed simple analytical expressions for the total efficiency,
rocking curve width, and spectral bandwidth of the SHG proc-
ess. These simple expressions can be used to give estimations for
many practical cases of experiments observing SHG in the x-ray
regime.
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